Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jørgensen, Loren

  • Google
  • 2
  • 4
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Dynamic arrest during the spreading of a yield stress fluid drop21citations
  • 2016Wetting of yield-stress fluids : capillary bridges and drop spreadingcitations

Places of action

Chart of shared publication
Martouzet, Grégoire
1 / 1 shared
Pelet, Yoann
1 / 1 shared
Biance, Anne-Laure
1 / 3 shared
Barentin, Catherine
1 / 7 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Martouzet, Grégoire
  • Pelet, Yoann
  • Biance, Anne-Laure
  • Barentin, Catherine
OrganizationsLocationPeople

thesis

Wetting of yield-stress fluids : capillary bridges and drop spreading

  • Jørgensen, Loren
Abstract

Wetting phenomena and yield-stress fluids rheology are subfields of soft matter physics where big understanding steps have been made during the last centuries. In addition, these two fields have very important potential implications for industry, which contributes to their dynamism. But their combination, the wetting of yield-stress fluids, has received little interest until the very last years, although it is a situation that happens all the time. Indeed, yield-stress fluids gather nearly all the fluids encountered in food industry, cosmetics, building industry, oil and gas industry… and wetting properties are crucial when processing or using the fluids, as many processes involve interfaces with air or a solid surface.In this thesis, I consider the following questions: how is the apparent surface tension affected by yield stress? How does the yield stress influence the wetting dynamics, classically described by Tanner’s law? Why can the final contact angle of a sessile drop of yield-stress fluid not be predicted by Young-Dupré’s theory?I performed experiments with a model yield-stress fluid called carbopol. The first experiment consisted in measuring the adhesion force of a capillary bridge and comparing it to the case of simple fluids. The main results show the importance of the deformation history and of the fluid elasticity. The second main experiment concerned spreading of drops on a hydrophilic surface. I studied the short-time dynamics and the long-time dynamics, as well as the final contact angle. The first regime is controlled by viscoelasticity, whereas the final state is determined by the yield stress

Topics
  • impedance spectroscopy
  • surface
  • theory
  • experiment
  • viscoelasticity
  • elasticity