Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stebbins, Jonathan

  • Google
  • 3
  • 10
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Evidence for Mixed Mg Coordination Environments in Silicate Glasses: Results from 25Mg NMR Spectroscopy at 35.2 T.4citations
  • 2002New opportunities for high-resolution solid-state NMR spectroscopy of oxide materials at 21.1-and 18.8-t fields52citations
  • 2001Three-coordinated boron-11 chemical shifts in boratescitations

Places of action

Chart of shared publication
Hung, Ivan
1 / 2 shared
Sen, Sabyasachi
1 / 6 shared
Kroeker, Scott
1 / 2 shared
Gan, Zhehong
1 / 1 shared
Jakobsen, H. J.
1 / 1 shared
Frye, J.
1 / 1 shared
Rice, D.
1 / 1 shared
Neuhoff, P.
1 / 1 shared
Kroeker, S.
2 / 2 shared
Du, L. S.
1 / 1 shared
Chart of publication period
2023
2002
2001

Co-Authors (by relevance)

  • Hung, Ivan
  • Sen, Sabyasachi
  • Kroeker, Scott
  • Gan, Zhehong
  • Jakobsen, H. J.
  • Frye, J.
  • Rice, D.
  • Neuhoff, P.
  • Kroeker, S.
  • Du, L. S.
OrganizationsLocationPeople

article

Three-coordinated boron-11 chemical shifts in borates

  • Kroeker, S.
  • Stebbins, Jonathan
Abstract

Despite the importance of (11)B nuclear magnetic resonance (NMR) in structural studies of borate glasses, no clear means of correlating NMR parameters with the number of nonbridging oxygens on three-coordinate boron has been demonstrated. In this work, a series of anhydrous, polycrystalline, binary borates has been examined by (11)B magic-angle spinning (MAS) NMR to obtain precise measurements of their three-coordinate boron isotropic chemical shifts. The shifts generally increase with the replacement of bridging oxygens by nonbridging oxygens, ranging from 14.6 ppm in crystalline B(2)O(3) to 22.5 ppm in magnesium orthoborate. The underlying physical basis for this trend is satisfactorily accounted for by considering second neighbor effects using bond valence sums. These data are supportive of a structural model for B(2)O(3) glass in which 72% of the boron atoms are in rings. High-field MAS NMR experiments (B(0) = 18.8 T) indicate that the boron shielding is anisotropic, with greater anisotropy measured for three-coordinate borons possessing one or two nonbridging oxygens, than for those with zero or three nonbridging oxygens.

Topics
  • impedance spectroscopy
  • experiment
  • Oxygen
  • Magnesium
  • Magnesium
  • glass
  • glass
  • anisotropic
  • Boron
  • isotropic
  • Nuclear Magnetic Resonance spectroscopy
  • spinning