Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wymysłowski, Paweł

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Finite element analysis of artificial disc with an elastomeric core in the lumbar spinecitations

Places of action

Chart of shared publication
Krzesiński, Grzegorz
1 / 4 shared
Ryszkowska, Joanna
1 / 11 shared
Zagrajek, Tomasz
1 / 3 shared
Waśniewski, Bartłomiej
1 / 2 shared
Marek, Piotr
1 / 4 shared
Borkowski, Paweł
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Krzesiński, Grzegorz
  • Ryszkowska, Joanna
  • Zagrajek, Tomasz
  • Waśniewski, Bartłomiej
  • Marek, Piotr
  • Borkowski, Paweł
OrganizationsLocationPeople

article

Finite element analysis of artificial disc with an elastomeric core in the lumbar spine

  • Krzesiński, Grzegorz
  • Ryszkowska, Joanna
  • Zagrajek, Tomasz
  • Waśniewski, Bartłomiej
  • Wymysłowski, Paweł
  • Marek, Piotr
  • Borkowski, Paweł
Abstract

This paper presents the application of finite element method in an artificial disc modelling. The prosthesis consisted of two metal plates and a flexible elastomeric core made of the nanocomposite polyurethane. Two types of connections between the plates and the core were compared: the device with an integral inlay and the device with a separate inlay coming into contact with the plates. The artificial disc with a separate inlay imitated better the human intervertebral disc. The main target of this paper was to evaluate the characteristics of force–displacement and moment–angle for the new design of the prosthesis with a separate inlay under compression, sagittal bending, shear and axial rotation. For some analyzed cases except the axial rotation and shear, where the prosthesis was too flexible, the results were roughly similar to those observed in the human spinal segment. The material effort in the prosthesis under compressive load was comparable in both types of connections between the plates and the core.

Topics
  • nanocomposite
  • finite element analysis