Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pietrak, Karol

  • Google
  • 4
  • 10
  • 34

Warsaw University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020On the anisotropy of thermal conductivity in ceramic bricks34citations
  • 2018Investigations on thermal anisotropy of ceramic brickscitations
  • 2017Effect of particle shape and imperfect filler-matrix interface on effective thermal conductivity of epoxy-aluminum compositecitations
  • 2014Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materialscitations

Places of action

Chart of shared publication
Wiśniewski, Tomasz
3 / 9 shared
Furmański, Piotr
2 / 8 shared
Cieślikiewicz, Łukasz
2 / 4 shared
Kubiś, Michał
3 / 13 shared
Seredyński, Mirosław
2 / 12 shared
Wasik, Michał
2 / 2 shared
Łapka, Piotr
2 / 9 shared
Langowski, Marcin Marek
1 / 1 shared
Kropielnicki, Michał
1 / 1 shared
Wultański, Paweł
1 / 1 shared
Chart of publication period
2020
2018
2017
2014

Co-Authors (by relevance)

  • Wiśniewski, Tomasz
  • Furmański, Piotr
  • Cieślikiewicz, Łukasz
  • Kubiś, Michał
  • Seredyński, Mirosław
  • Wasik, Michał
  • Łapka, Piotr
  • Langowski, Marcin Marek
  • Kropielnicki, Michał
  • Wultański, Paweł
OrganizationsLocationPeople

article

Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials

  • Wiśniewski, Tomasz
  • Pietrak, Karol
Abstract

Interfacial thermal resistance (ITR) exists between filler and matrix in any composite material and has great influence on its effective thermal conductivity. To predict the effective thermal conductivity of composite material, the conductivities of each component as well as the ITR must be known. Theoretical models, like acoustic mismatch model (AMM), allow for accurate ITR determination only for an idealized case of perfect contact (no interfacial gaps and good bonding). The interfacial bonding in typical composites for thermal conduction, like diamond-reinforced metal matrix composites (MMCs) is usually highly imperfect and the ITR, in composites of the same type, depends highly on the individual manufacturing conditions. Therefore, a great need for reliable experimental ITR measurement techniques exists. In this paper, main difficulties regarding experimental ITR measurements are discussed. A review of measurement techniques is presented, with the main focus put on the principle of each technique and its fitness for the purpose of composite materials. The strengths and weaknesses of each technique are discussed.

Topics
  • impedance spectroscopy
  • strength
  • interfacial
  • thermal conductivity
  • metal-matrix composite