People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Konopka, Katarzyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (45/45 displayed)
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2021Manufacturing of Al2O3/Ni/Ti Composites Enhanced by Intermetallic Phasescitations
- 2021Zirconia–Alumina Composites Obtained by Centrifugal Slip Casting as Attractive Sustainable Material for Application in Constructioncitations
- 2021Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sinteringcitations
- 2021Environmental footprint as a criterion in the ZTA composites forming process via centrifugal slip castingcitations
- 2021Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Castingcitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2020Manufacturing of ZrO2-Ni graded composites via centrifugal casting in the magnetic fieldcitations
- 2019The possibility of producing graded Al2O3-Mo, Al2O3-Cu, Al2O3-W composites using CSC methodcitations
- 2019Characterization of Alumina–Molybdenum Composites Prepared by Gel Casting Methodcitations
- 2019Characterization of Al2O3/Ni composites manufactured via CSC technique in magnetic fieldcitations
- 2019Investigation on fabrication and property of graded composites obtained via centrifugal casting in the magnetic fieldcitations
- 2018Fabrication Of Al2O3-Ni Graded Composites By Centrifugal Casting In An Ultracentrifuge
- 2018Fabrication and characterization of ZrO2/Ni compositescitations
- 2018Microstructure and hardness of Al2O3-ZrO2-Ti composites
- 2018Combined centrifugal-slip casting method used for preparation the Al2O3-Ni functionally graded compositescitations
- 2018Sintering behavior and thermal expansion of zirconia–titanium compositescitations
- 2018Zirconia–Titanium Interface in Ceramic Based Compositecitations
- 2018Thermoanalytical studies of the ceramic-metal composites obtained by gel-centrifugal castingcitations
- 2018Dilatrometric sintering study and characterization of alumina-nickel compositescitations
- 2017Surface layer structure of Al2O3-Ni graded composites depending on gypsum mold porosity
- 2017Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEMcitations
- 2017Al2O3/Ni functionally graded materials (FGM) obtained by centrifugal-slip casting methodcitations
- 2017The Formation of ZrO2–Ti Composites by Spark Plasma Sinteringcitations
- 2017Al2O3 – Mo functionally graded material obtained via centrifugal slip casting
- 2017Microstructure Characterization of Composite from ZrO2 – Ti Systemcitations
- 2016QUANTITATIVE DESCRIPTION OF THE SPINEL PHASE (NiAl2O4) LOCATED INTO Al2O3 MATRIX
- 2016Fabrication of graded alumina-nickel composites by centrufugal slip casting
- 2016Structural and mechanical properties of graded composite Al <inf>2</inf> O <inf>3</inf> /Ni obtained from slurry of different solid contentcitations
- 2016Metal particles size influence on graded structure in composite Al2O3-Ni
- 2016Processing and characterization of ceramic-metal composites obtained by centrifugal slip casting
- 2016Metal particles size influence on graded structure in composite Al<inf>2</inf>O<inf>3</inf>-Nicitations
- 2016Characterization of composites containing NiAl2O4 spinel phase from Al2O3/NiO and Al2O3/Ni systemscitations
- 2016Structural and mechanical properties of graded composite Al2O3/Ni obtained from slurry of different solid content
- 2016ZrO2-Ni composites - properties and characterization
- 2016Al2O3-Ni composites produced with various rotational speed
- 2016Fabrication of ZrO2-Ti composites by slip casting methodcitations
- 2015Synthesis and Characterization of Nickel Aluminate Spinel (NiAl2O4) Prepared from the Equilibrium Mixture of Al2O3 and NiO
- 2015Forming graded microstructure of Al2O3-Ni composite by centrifugal slip casting
- 2014Morphology of nickel aluminate spinel (NiAl2O4) formed in the Al2O3-Ni composite system sintered in air
- 2014Preparation of Al2O3-Ni Cermet Composites by Aqueous Gelcastingcitations
- 2014Application of gelcasting method on ceramic-metal composite fabrication
- 2011Properties of Water-Based Slurries for Fabrication of Ceramic-Metal Composites by Slip Casting Methodcitations
- 2006Effect of elastomer structure on ceramic–elastomer composite propertiescitations
- 2004Microstructure and properties of novel ceramic–polymer compositescitations
Places of action
Organizations | Location | People |
---|
article
Metal particles size influence on graded structure in composite Al2O3-Ni
Abstract
The aim of this study was to investigate the effect of the nickel particle size on the changes in metallic phase content in the graded structure in the Al2O3-Ni composites. Centrifugal slip casting was chosen as the method of composite fabrication. This method allows the creation of a graded distribution of Ni particles in the hollow cylinder composite sample. Functional graded materials were prepared in the vertical rotation axis. In the experiments the following powders were used: -Al2O3 TM-DAR from Taimei Chemicals (Japan) of an average particle size 0.133 μm and density 3.96 g/cm3 and Ni powders from Sigma-Aldrich of average particle sizes 3 μm and 8.5 μm. Aqueous slurries containing alumina (50 % of volume fractions of solid phase volume content) and nickel powders (10 % of volume fractions) were tested. Deflocculates diammonium citrate (p.a., Aldrich) and citric acid (p.a., POCH Gliwice) were also added. Final sintering was conducted on all the specimens at 1400 °C in a reducing atmosphere (N2/H2). The obtained samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, quantitative analyses of the Ni particles distribution were made. In the fabricated samples the graded structure were characterized by zones with different Ni particles concentration. The size of the Ni particles influences the width of these zones. Vickers indentation was used to determine the hardness of the materials.