People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lee, Jungchul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Reversible nanoscale local wettability modifications by thermochemical nanolithography
Abstract
<p>Recently, the development of a versatile thermochemical nanolithography (TCNL) technique was reported. It allows for simultaneous control of the local chemistry and topography of thin polymer films. This technique can pattern sub-15 nm chemical and topographical features at the rate of 1.4 mm per second by inducing thermally-activated chemical reactions by means of a heated atomic force microscope (AFM) tip. TCNL is achievable in different environments and can easily be adapted to a variety of substrates and chemical functionalities. Here, we demonstrate that a thin polymer film can be chemically modified twice using TCNL to tune its wettability. We are able to write hydrophilic nanopatterns over a hydrophobic polymer surface in a first heating step and then revert back to a hydrophobic nanopattern in a second heating step. This capability is particularly useful in data storage application and complex nanofluidic device design.</p>