People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wysocki, Bartłomiej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Meltingcitations
- 2019The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell responsecitations
- 2019New approach to amorphization of alloys with low glass forming ability via selective laser meltingcitations
- 2018The Influence of Selective Laser Melting (SLM) Process Parameters on In-Vitro Cell Responsecitations
- 2018Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testingcitations
- 2018Structure and porosity of titanium scaffolds manufactured by selective laser meltingcitations
- 2017Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)citations
- 2017Fabrication of custom designed spinal disc replacement for veterinary applications
- 2017Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implantscitations
- 2016The process of design and manufacturing of titanium scaffolds in the SLM technology for tissue engineering
- 2016Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineeringcitations
- 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Melting
- 2015CNTs as ion carriers in formation of calcium phosphate coatingscitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of custom designed spinal disc replacement for veterinary applications
Abstract
Two-phase alpha-beta titanium alloy Ti-6Al-7Nb is widely used in many industrial applications. Due to excellent biocompatibility and non-toxicity in human body environment and excellent mechanical properties it is an attractive material in medical field. Difficulties with fabrication complex shaped medical implants and gradient or lattice structures from Ti-6Al7Nb alloy lead to finding out fabrication method which allows to produce such elements. The most appropriate for mentioned applications are Additive Manufacturing (AM) techniques such as Selective Laser Melting (SLM), which enables producing any geometry directly from the Computer Aided Design (CAD) model. The aim of the study was fabrication of custom designed spinal disc replacement for veterinary applications.