People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kublik, Żaneta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Fabrication of porous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds using a Rapid Prototyping Technique
Abstract
Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable polymer which belongs to a group of aliphatic polyesters. PHBV is a thermoplast with a relatively high melt flow index. This property makes it difficult to process by means of extrusion. In the present study we have prepared PHBV blended with PLGA and determined its melt flow rate (MFR). The addition of PLGA decreased MFR, which enabled fabrication of threedimensional scaffold by means of Fused Deposition Modeling (FDM).