People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wysocki, Bartłomiej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Meltingcitations
- 2019The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell responsecitations
- 2019New approach to amorphization of alloys with low glass forming ability via selective laser meltingcitations
- 2018The Influence of Selective Laser Melting (SLM) Process Parameters on In-Vitro Cell Responsecitations
- 2018Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testingcitations
- 2018Structure and porosity of titanium scaffolds manufactured by selective laser meltingcitations
- 2017Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)citations
- 2017Fabrication of custom designed spinal disc replacement for veterinary applications
- 2017Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implantscitations
- 2016The process of design and manufacturing of titanium scaffolds in the SLM technology for tissue engineering
- 2016Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineeringcitations
- 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Melting
- 2015CNTs as ion carriers in formation of calcium phosphate coatingscitations
Places of action
Organizations | Location | People |
---|
article
The process of design and manufacturing of titanium scaffolds in the SLM technology for tissue engineering
Abstract
The paper presents the process of design and 3D printing of titanium scaffolds for the culture of chondrocytes for the purpose of reconstructive surgery. Using CAD techniques, 4 variants of geometric models were developed which were diversified in internal architecture (2 net-like ones with the pore size of 450 μm and 600 μm, and 2 hexagonal ones with the pores in the shape of a hexagon inscribed in a circle with a diameter of 1097 μm and 1386 μm). Each of them was made in the technology of selective laser melting of titanium powder Grade 4 with larger (40 W) and smaller (35 W) laser power, and then subjected to the process of chemical polishing. Dimensional accuracy and surface quality of the produced prototypes of scaffolds were verified macro- and microscopically. The studies allowed to identify optimal process parameters for the manufacturing titanium scaffolds with the best representation of the CAD geometrical models.