Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wysocki, Bartłomiej

  • Google
  • 14
  • 51
  • 759

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Compositescitations
  • 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting12citations
  • 2019The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response102citations
  • 2019New approach to amorphization of alloys with low glass forming ability via selective laser melting60citations
  • 2018The Influence of Selective Laser Melting (SLM) Process Parameters on In-Vitro Cell Response55citations
  • 2018Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testing38citations
  • 2018Structure and porosity of titanium scaffolds manufactured by selective laser melting1citations
  • 2017Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)167citations
  • 2017Fabrication of custom designed spinal disc replacement for veterinary applicationscitations
  • 2017Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants234citations
  • 2016The process of design and manufacturing of titanium scaffolds in the SLM technology for tissue engineeringcitations
  • 2016Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering89citations
  • 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Meltingcitations
  • 2015CNTs as ion carriers in formation of calcium phosphate coatings1citations

Places of action

Chart of shared publication
Choma, Tomasz
1 / 6 shared
Leonowicz, Marcin
2 / 26 shared
Li, X.
1 / 71 shared
Krawczynska, Agnieszka
1 / 7 shared
Swieszkowski, Wojciech
1 / 15 shared
Żrodowski, Cezary
1 / 2 shared
Błyskun, Piotr
2 / 11 shared
Wróblewski, Rafał
3 / 11 shared
Kulikowski, Krzysztof
1 / 18 shared
Małachowska, Aleksandra
1 / 3 shared
Moneta, Grzegorz
1 / 2 shared
Masset, Patrick
1 / 2 shared
Cetner, Tomasz
1 / 2 shared
Jaroszewicz, Jakub
2 / 23 shared
Dobkowska, Anna
1 / 33 shared
Ciftci, Jakub
1 / 8 shared
Yuan, L.
1 / 7 shared
Morończyk, Bartosz
1 / 12 shared
Chulist, Robert
1 / 23 shared
Żrodowski, Łukasz
4 / 12 shared
Szustecki, Maciej
1 / 1 shared
Sitek, Ryszard
2 / 38 shared
Wiśniewski, Paweł
1 / 26 shared
Mizera, Jarosław
1 / 113 shared
Brynk, Tomasz
2 / 19 shared
Idaszek, Joanna
3 / 10 shared
Kurzydłowski, Krzysztof
7 / 114 shared
Buhagiar, Joseph
2 / 10 shared
Święszkowski, Wojciech
11 / 53 shared
Szlązak, Karol
3 / 10 shared
Krawczyńska, Agnieszka
2 / 15 shared
Zdunek, Joanna
3 / 34 shared
Ferenc, Jarosław
1 / 11 shared
Adamczyk-Cieślak, Bogusława
1 / 77 shared
Pisarek, Marcin
1 / 16 shared
Yamamoto, A.
1 / 10 shared
Rożniatowski, Krzysztof
2 / 15 shared
Westhoff, Daniel
1 / 3 shared
Wejrzanowski, Tomasz
1 / 27 shared
Šedivý, Ondřej
1 / 1 shared
Schmidt, Volker
1 / 32 shared
Skibiński, Jakub
1 / 7 shared
Skalski, Konstanty
2 / 2 shared
Makuch, Anna
2 / 2 shared
Jankowski, Krzysztof
2 / 2 shared
Maj, Piotr
2 / 15 shared
Chmielewska, Agnieszka
1 / 5 shared
Sterna, Jacek
1 / 1 shared
Strzelczyk, Karolina
1 / 1 shared
Leszczyńska, D.
1 / 1 shared
Dybala, B.
1 / 1 shared
Chart of publication period
2022
2020
2019
2018
2017
2016
2015

Co-Authors (by relevance)

  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Masset, Patrick
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Dobkowska, Anna
  • Ciftci, Jakub
  • Yuan, L.
  • Morończyk, Bartosz
  • Chulist, Robert
  • Żrodowski, Łukasz
  • Szustecki, Maciej
  • Sitek, Ryszard
  • Wiśniewski, Paweł
  • Mizera, Jarosław
  • Brynk, Tomasz
  • Idaszek, Joanna
  • Kurzydłowski, Krzysztof
  • Buhagiar, Joseph
  • Święszkowski, Wojciech
  • Szlązak, Karol
  • Krawczyńska, Agnieszka
  • Zdunek, Joanna
  • Ferenc, Jarosław
  • Adamczyk-Cieślak, Bogusława
  • Pisarek, Marcin
  • Yamamoto, A.
  • Rożniatowski, Krzysztof
  • Westhoff, Daniel
  • Wejrzanowski, Tomasz
  • Šedivý, Ondřej
  • Schmidt, Volker
  • Skibiński, Jakub
  • Skalski, Konstanty
  • Makuch, Anna
  • Jankowski, Krzysztof
  • Maj, Piotr
  • Chmielewska, Agnieszka
  • Sterna, Jacek
  • Strzelczyk, Karolina
  • Leszczyńska, D.
  • Dybala, B.
OrganizationsLocationPeople

booksection

The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Melting

  • Kurzydłowski, Krzysztof
  • Wysocki, Bartłomiej
  • Święszkowski, Wojciech
  • Wróblewski, Rafał
  • Żrodowski, Łukasz
Abstract

Metallic Glasses (MGs) can be described as a stable in the room temperature metallic materials with a disordered liquid-like structure produced during rapid cooling of a molten alloy. Due to the limited Glass Forming Ability (GFA), most of the MGs are produced as a thin ribbons through melt-spinning or as a fine powder during atomization processes. Certain multicomponent alloys with exceptionally high GFA, known as Bulk Metallic Glasses (BMGs), can retain disordered structure during copper-mold casting. The size and the complexity of objects produced in a such way is limited by the critical cooling rate. Additive Manufacturing (AM) methods like Selective Laser Melting (SLM) have been shown in a few studies as very perspective for producing BMGs without such limitations. In this work Realizer SLM-50, a desktop SLM machine, was used to selectively melt Kuamet52 Fe Si B Cr-C metallic glass powder with various laser parameters. Material was rescanned with high power density and a novel Pulse-Random (P-R) strategy to achieve high content of glassy phase, despite low GFA of the alloy. Optical Microscopy (OM) was used to preliminary determine material structure. Amorphous structure was confirmed by the Differential Scanning Calorimetry (DSC) while residual crystalline phases were identified by the X-Ray Diffraction (XRD). Microstructural observations revealed, after the first melting in conduction mode, mostly crystalline phases made in samples. After the second melting in key-hole mode, which was performed with P-R strategy, there was observed great increase of amorphous phase content. Samples fabricated with new scanning strategies had amorphisation degree exceeding 60%, with retained α-Fe3Si and FeB2 crystalline phases. Model of the laser melted MGs crystallization, focused on devitrification during laser heating in Heat Affected Zone (HAZ), has been proposed to explain observed phenomena.

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • x-ray diffraction
  • melt
  • crystalline phase
  • glass
  • glass
  • selective laser melting
  • copper
  • differential scanning calorimetry
  • casting
  • random
  • optical microscopy
  • crystallization
  • atomization
  • spinning