People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czarnecka, Patrycja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Producing and properties of the polylactide-alumina nanocomposite fibres
Abstract
We have described a method of producing polylactide-alumina nanocomposite fibres. Alumina nanoparticles have been combined with polylactide (PLA) to obtain composite. In the next step nanocomposite fibres have been produced by electrospinning method. Nanoalumina has been acquired by an innovative thermal decomposition method, which has been described by us earlier. The morphology and properties of the Al2O3 nanopowder as well as final product were examined using scanning electron microscope (SEM) and BET surface area measurements. Phase composition of the Al2O3 nanopowder was investigated using X-ray diffraction method. Electrospinning method allows producing homogeneous fibres of the nanocomposite PLA-Al2O3. The average particle size of the Al2O3 nanopowder incorporated in fibres was 57.9 nm. Specific BET surface area of the nanoalumina was 289.7 m2.g-1.