People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pachla, Wacław
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2019Anisotropy of mechanical and structural properties in AA 6060 aluminum alloy following hydrostatic extrusion processcitations
- 2018Effect of Severe Plastic Deformation Realized by Hydrostatic Extrusion on Heat Transfer in CP Ti Grade 2 and 316L Austenitic Stainless Steelcitations
- 2014Microstructure and mechanical properties of duplex stainless steel subjected to hydrostatic extrusioncitations
- 2012High strength silicon bronze (C65500) obtained by hydrostatic extrusioncitations
- 2006The influence of hydrostatic extrusion on the microstructure of 6082 aluminium alloy
- 2005Grain refinement in aluminium and the aluminium Al-Cu-Mg-Mn alloy by hydrostatic extrusion
- 2005Microstructure and mechanical properties of nickel deformed by hydrostatic extrusion
- 2005Hydrostatic extrusion and nanostructure formation in an aluminium alloycitations
Places of action
Organizations | Location | People |
---|
article
Grain refinement in aluminium and the aluminium Al-Cu-Mg-Mn alloy by hydrostatic extrusion
Abstract
<p>Hydrostatic extrusion was used as a method for grain refinement in technically pure aluminium and in an aluminium alloy. Both materials were deformed up to a true strain of ∼4. Such a deformation resulted in substantial grain size refinement to below 1 μm in aluminium and below 100 nm in the aluminium alloy. In pure aluminium, microstructure evolution proceeds by a continuous increase in the grain boundary misorientation, without changing the grain size. In the aluminium alloy, which has lower stacking fault energy, grains continuously decrease in size, down to the nanometre scale. As a consequence of such microstructure evolutions, the mechanical properties of pure aluminium remain almost constant within a wide range of strains, whereas the mechanical properties of the aluminium alloy are significantly improved. From the present study, one can conclude that hydrostatic extrusion can offer an alternative way to produce nano-metallic elements made of aluminium alloys for light-weight applications. aluminium, aluminium alloys, ultra-fine grained.</p>