People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bossuyt, Frederick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Methods to improve accuracy of electronic component positioning in thermoformed electronicscitations
- 2022Innovative component positioning method for thermoformed electronicscitations
- 2022A study on over-molded copper-based flexible electronic circuitscitations
- 2020Flexible microsystems using over-molding technologycitations
- 2020Solar cells integration in over-molded printed electronicscitations
- 2019Effect of overmolding process on the integrity of electronic circuitscitations
- 2017Arbitrarily shaped 2.5D circuits using stretchable interconnects embedded in thermoplastic polymerscitations
- 2016One-time deformable thermoplastic devices based on flexible circuit board technologycitations
- 2015Deformable microsystem for in situ cure degree monitoring of GFRP(Glass Fibre Reinforced Plastic)
- 20152.5D smart objects using thermoplastic stretchable interconnectscitations
- 2015Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections
- 2013Stretchable electronics technology for large area applications: fabrication and mechanical characterizationcitations
- 2011The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnectscitations
Places of action
Organizations | Location | People |
---|
document
Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections
Abstract
A technology is presented for the production of soft and rigid circuits with an arbitrary 2.5D fixed shape. The base of this technology is our proprietary technology for elastic circuits with a random shape, in which the elastic thermoset (mostly PDMS) polymer is now replaced by soft or rigid thermoplastic variants. An additional thermoforming step is required to transform the circuit from its initial flat to its final fixed 2.5D shape, but for rigid fixed shape circuits only one-time stretchability of the extensible interconnects is required, relieving the reliability requirements.