Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baskes, M. I.

  • Google
  • 3
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2006Atomistic model of helium bubbles in gallium-stabilized plutonium alloyscitations
  • 2003Atomistic models of point defects in plutonium metal.citations
  • 2002Atomistic simulations of the plasticity behavior of polycrystalline metals.citations

Places of action

Chart of shared publication
Martin, R. L.
1 / 2 shared
Valone, S. M.
2 / 2 shared
Uberuaga, B. P.
1 / 3 shared
Voter, A. F.
1 / 1 shared
Chart of publication period
2006
2003
2002

Co-Authors (by relevance)

  • Martin, R. L.
  • Valone, S. M.
  • Uberuaga, B. P.
  • Voter, A. F.
OrganizationsLocationPeople

document

Atomistic simulations of the plasticity behavior of polycrystalline metals.

  • Baskes, M. I.
Abstract

Recent advances in computers and atomistic modeling have made the realistic simulation of materials behavior possible. Two decades ago, modeling of materials at the atomic level used simple pair potentials. These potentials did not provide an accurate description of the elastic properties of materials or of the formation of free surfaces, a phenomenon critical in the fracture process. This paper will review the evolution of the Embedded Atom Method (EAM), a modern theory of metallic cohesion that was developed to overcome the limitations of pair potentials. The EAM includes many body effects that are necessary to describe such processes as bond weakening (or strengthening) by impurities. We examine the effects of deformation on polycrystalline FCC metals. We perform simple shear molecular dynamics simulations using the EAM on nickel samples of -10000 atoms to study yield and work hardening. It is found that the deformation is always inhomogeneous when a grain boundary or free surface is present. The atomistic simulations reveal that dislocations nucleating at grain boundaries or free surfaces are critical to causing yielding in pristine material as observed in experiment. Detailed investigation shows that the grain boundaries are significantly weaker than the bulk material and yield at a lower stress. Even so, the yield stress of the polycrystalline samples with either low angle and high angle grain boundaries are found to be similar and only slightly lower than the yield stress of single crystals with the same characteristic dimensions. The local yield stress at the boundaries if found to be significantly less than the average yield stress.

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • grain
  • nickel
  • grain boundary
  • theory
  • experiment
  • simulation
  • molecular dynamics
  • laser emission spectroscopy
  • dislocation
  • plasticity