Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pernot, Gilles

  • Google
  • 11
  • 52
  • 95

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Thermal properties of nanoporous materials, large scale modelling with the use of Monte Carlo phonon transport autocorrelation4citations
  • 2023Thermal properties of nanoporous materials, large scale modelling with the use of Monte Carlo phonon transport autocorrelation4citations
  • 2023Tuning the physico-chemical properties of SnSe films by pulse electrodeposition5citations
  • 2023Boosting Thermoelectric Power Factor of Carbon Nanotube Networks with Excluded Volume by Co-Embedded Microparticles5citations
  • 2021Features of thermal transport in "porous matrix/liquid" nanocomposite systemcitations
  • 2018Enhanced thermal conductivity in percolating nanocomposites: a molecular dynamics investigation13citations
  • 2015Titanium-based silicide quantum dot superlattices for thermoelectrics applications13citations
  • 2013Picosecond Joule heating in photoconductive switch electrodes9citations
  • 2012Thermoelectric properties of epitaxial TbAs:InGaAs nanocomposites21citations
  • 2012Controlling n-Type Carrier Density from Er Doping of InGaAs with MBE Growth Temperature3citations
  • 2011Growth and characterization of TbAs:GaAs nanocomposites18citations

Places of action

Chart of shared publication
Nkenfack, M. I.
1 / 1 shared
Lacroix, David
5 / 14 shared
Isaiev, Mykola
4 / 11 shared
Nkenfack, Isibert Marcel
1 / 1 shared
Stein, Nicolas
1 / 16 shared
Zimmer, Alexandre
1 / 3 shared
Ghanbaja, Jaafar
1 / 45 shared
Haye, Emile
1 / 28 shared
Toledo, Milan
1 / 1 shared
De Vos, Mélanie
1 / 1 shared
Zhang, Yu
1 / 39 shared
Kondapalli, Vamsi Krishna Reddy
1 / 1 shared
Wu, Yue
1 / 6 shared
Mandrolko, Viktor
1 / 1 shared
Shanov, Vesselin
1 / 5 shared
Yang, Fan
1 / 31 shared
Akinboye, Oluwasegun Isaac
1 / 1 shared
Bahk, Je-Hyeong
2 / 3 shared
Klochko, Liudmyla
1 / 2 shared
Kioseoglou, Joseph
1 / 7 shared
Giordano, Valentina, M.
1 / 3 shared
Termentzidis, Konstantinos
1 / 20 shared
Karakostas, Ioannis
1 / 1 shared
Katsikini, Maria
1 / 1 shared
Verdier, Maxime
1 / 5 shared
Paloura, Eleni
1 / 1 shared
Montès, Laurent
1 / 4 shared
Silveira Stein, Sergio
1 / 1 shared
Dilhaire, Stefan
1 / 9 shared
Bernard-Granger, Guillaume
1 / 9 shared
Faucherand, Pascal
1 / 7 shared
Savelli, Guillaume
1 / 4 shared
Gossard, Arthur C.
3 / 3 shared
Vermeersch, Bjorn
1 / 3 shared
Shakouri, Ali
3 / 7 shared
Lu, Hong
2 / 3 shared
Buehl, Trevor E.
2 / 2 shared
Clinger, Laura E.
1 / 1 shared
Burke, Peter G.
2 / 2 shared
Palmstrøm, Christopher J.
1 / 4 shared
Zide, Joshua M. O.
1 / 2 shared
Bowers, John E.
1 / 2 shared
Palmstrom, Chris J.
1 / 2 shared
Doty, Matthew, F.
1 / 1 shared
Buehl, Trevor, C.
1 / 1 shared
Gossard, Art, C.
1 / 1 shared
Palmstrøm, Chris, C.
1 / 1 shared
Haughn, Chelsea, R.
1 / 1 shared
Cassels, Laura, E.
1 / 1 shared
Zide, Joshua, M. O.
1 / 1 shared
Shakouri, Ali, C.
1 / 1 shared
Burke, Peter, C.
1 / 1 shared
Chart of publication period
2023
2021
2018
2015
2013
2012
2011

Co-Authors (by relevance)

  • Nkenfack, M. I.
  • Lacroix, David
  • Isaiev, Mykola
  • Nkenfack, Isibert Marcel
  • Stein, Nicolas
  • Zimmer, Alexandre
  • Ghanbaja, Jaafar
  • Haye, Emile
  • Toledo, Milan
  • De Vos, Mélanie
  • Zhang, Yu
  • Kondapalli, Vamsi Krishna Reddy
  • Wu, Yue
  • Mandrolko, Viktor
  • Shanov, Vesselin
  • Yang, Fan
  • Akinboye, Oluwasegun Isaac
  • Bahk, Je-Hyeong
  • Klochko, Liudmyla
  • Kioseoglou, Joseph
  • Giordano, Valentina, M.
  • Termentzidis, Konstantinos
  • Karakostas, Ioannis
  • Katsikini, Maria
  • Verdier, Maxime
  • Paloura, Eleni
  • Montès, Laurent
  • Silveira Stein, Sergio
  • Dilhaire, Stefan
  • Bernard-Granger, Guillaume
  • Faucherand, Pascal
  • Savelli, Guillaume
  • Gossard, Arthur C.
  • Vermeersch, Bjorn
  • Shakouri, Ali
  • Lu, Hong
  • Buehl, Trevor E.
  • Clinger, Laura E.
  • Burke, Peter G.
  • Palmstrøm, Christopher J.
  • Zide, Joshua M. O.
  • Bowers, John E.
  • Palmstrom, Chris J.
  • Doty, Matthew, F.
  • Buehl, Trevor, C.
  • Gossard, Art, C.
  • Palmstrøm, Chris, C.
  • Haughn, Chelsea, R.
  • Cassels, Laura, E.
  • Zide, Joshua, M. O.
  • Shakouri, Ali, C.
  • Burke, Peter, C.
OrganizationsLocationPeople

article

Controlling n-Type Carrier Density from Er Doping of InGaAs with MBE Growth Temperature

  • Bowers, John E.
  • Buehl, Trevor E.
  • Gossard, Arthur C.
  • Pernot, Gilles
  • Burke, Peter G.
  • Shakouri, Ali
  • Lu, Hong
  • Palmstrom, Chris J.
Abstract

International audience ; Under certain growth conditions in molecular beam epitaxy, erbium, indium, gallium, and arsenic form a two-phase composite, consisting of ErAs nanoparticles embedded in dilute Er-doped In0.53Ga0.47As. This paper further explores the effect of growth conditions, specifically growth temperature, on the nanostructure of this material and the resulting thermal and electrical transport properties. For a set of samples grown with substrate temperatures varying from 430C to 525C, we find that the thermal conductivity decreases slightly with increasing growth temperature (from 4.8 W/m K to 4.1 W/m K) while the electrical conductivity decreases dramatically with increasing growth temperature (from 2100 S/cm to 110 S/cm), which is largely due to decreasing carrier concentration. At higher growth temperatures, more erbium precipitates out of solution and the size and density of the ErAs nanoparticles increase, as characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), while the total erbium concentration does not change with growth temperature, as characterized by Rutherford backscatter spectrometry (RBS). Measurement of the erbium concentration by secondary-ion mass spectrometry suggests that the Er bonding configuration changes with growth temperature. These results indicate that increasing the ratio of solute Er atoms in the In0.53Ga0.47As host to precipitated Er atoms in ErAs particles increases the carrier density and electrical conductivity of the total composite material.

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • phase
  • composite
  • mass spectrometry
  • transmission electron microscopy
  • precipitate
  • thermal conductivity
  • electrical conductivity
  • spectrometry
  • Rutherford backscattering spectrometry
  • Arsenic
  • Gallium
  • Indium
  • Erbium