People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Strunskus, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Early-stage silver growth during sputter deposition on SiO2 and polystyrene - Comparison of biased DC magnetron sputtering, high-power impulse magnetron sputtering (HiPIMS) and bipolar HiPIMScitations
- 2024Early-stage silver growth during sputter deposition on SiO$_2$ and polystyrene – Comparison of biased DC magnetron sputtering, high-power impulse magnetron sputtering (HiPIMS) and bipolar HiPIMScitations
- 2024Influence of Silsesquioxane-Containing Ultra-Thin Polymer Films on Metal Oxide Gas Sensor Performance for the Tunable Detection of Biomarkerscitations
- 2024Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticlescitations
- 2024Plasma‐Driven Tuning of Dielectric Permittivity in Graphenecitations
- 2023Two-in-One Sensor Based on PV4D4-Coated TiO 2 Films for Food Spoilage Detection and as a Breath Marker for Several Diseasescitations
- 2023Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticles
- 2023Tuning the Selectivity of Metal Oxide Gas Sensors with Vapor Phase Deposited Ultrathin Polymer Thin Filmscitations
- 2022A thin-film broadband perfect absorber based on plasmonic copper nanoparticlescitations
- 2022In Situ Monitoring of Scale Effects on Phase Selection and Plasmonic Shifts during the Growth of AgCu Alloy Nanostructures for Anticounterfeiting Applicationscitations
- 2022Template-Induced Growth of Sputter-Deposited Gold Nanoparticles on Ordered Porous TiO$_2$ Thin Films for Surface-Enhanced Raman Scattering Sensorscitations
- 2022Sensing performance of CuO/Cu2O/ZnOcitations
- 2021Selective Silver Nanocluster Metallization on Conjugated Diblock Copolymer Templates for Sensing and Photovoltaic Applicationscitations
- 2021Tuning wettability of TiO 2 thin film by photocatalytic deposition of 3D flower- and hedgehog-like Au nano- and microstructurescitations
- 2021Revealing the growth of copper on polystyrene- block -poly(ethylene oxide) diblock copolymer thin films with in situ GISAXScitations
- 2021Tuning wettability of TiO2 thin film by photocatalytic deposition of 3D flower- and hedgehog-like Au nano- and microstructurescitations
- 2021Real-time insight into nanostructure evolution during the rapid formation of ultra-thin gold layers on polymerscitations
- 2020Following in Situ the Deposition of Gold Electrodes on Low Band Gap Polymer Filmscitations
- 2019Correlating Nanostructure, Optical and Electronic Properties of Nanogranular Silver Layers during Polymer-Template-Assisted Sputter Depositioncitations
- 2019PANI film on carbon nanowalls: synthesis and analysis
- 2019PANI film on carbon nanowalls: synthesis and analysis
- 2019The impact of O2/Ar ratio on morphology and functional properties in reactive sputtering of metal oxide thin filmscitations
- 2019Pathways to Tailor Photocatalytic Performance of TiO2 Thin Films Deposited by Reactive Magnetron Sputteringcitations
- 2018A Flexible Oxygenated Carbographite Nanofilamentous Buckypaper as an Amphiphilic Membranecitations
- 2018Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation sourcecitations
- 2017Role of Sputter Deposition Rate in Tailoring Nanogranular Gold Structures on Polymer Surfacescitations
- 2015Real-Time Monitoring of Morphology and Optical Properties during Sputter Deposition for Tailoring Metal–Polymer Interfacescitations
- 2014In situ Raman spectroscopy for growth monitoring of vertically aligned multiwallcarbon nanotubes in plasma reactorcitations
- 2013Electronic structure, adsorption geometry, and photoswitchability of azobenzene layers adsorbed on layered crystalscitations
- 2012Vapour phase deposition of highly crystalline self-poled piezoelectric nylon-11citations
- 2010Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compoundscitations
- 2008Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation techniquecitations
- 2007Influence of molecular structure on phase transitions: A study of self-assembled monolayers of 2-(aryl)-ethane thiolscitations
Places of action
Organizations | Location | People |
---|
document
PANI film on carbon nanowalls: synthesis and analysis
Abstract
The interest in the novel, often carbonaceous materials with large effective surfaces, high conductivity, stability, is growing due to the downsizing of electrical devices and the demand for low-cost new materials. These demonstrate many potential applications such as electrochemical devices, storage materials for gas, transistors, and biosensors.In this work, the synthesis and analysis of CNWs and graphene nanocomposites synthesis, such as Polyaniline (PANI) – CNWs composites, will be presented.Possible application of CNWs and PANI-CNWs nanocomposites is in carbon based microelectronic parts of biosensors. CNWs are produced by low-temperature plasma procedures, supported by prior annealing within the same system. The plasma properties during annealing, growth process, and polymer deposition were chosen in order to obtain the best conditions and minimum material damage. The material structure, e.g. morphological, chemical and microstructural features, is revealed by employing near edge X-ray absorption fine structure (NEXAFS) spectroscopy, in combination with X-ray photoelectron spectroscopy (XPS), on the HE-SGM beamline at the synchrotron radiation facility BESSY II in Berlin (Germany). NEXAFS is a unique method to obtain information on the surface states (bonding states, fingerprint of materials).