People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weisz-Patrault, Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy depositioncitations
- 2020Fast simulation of grain growth based on Orientated Tessellation Updating Methodcitations
- 2020Energetic upscaling strategy for grain growth. I: Fast mesoscopic model based on dissipationcitations
- 2019Fast simulation of grain growth based on Orientated Tessellation Updating Method
- 2019Fast Mesoscopic Simulation Of Grain Growth And Macroscopic Modeling
- 2019Residual Strains In Directed Energy Deposition Additive Manufacturing
- 2019Fast simulation of temperature and phase transitions in directed energy deposition additive manufacturing
- 2019Fast macroscopic thermal analysis for laser metal deposition. Application to multiphase steels
- 2017Energetic approach coupled with analytic solutions for the evaluation of residual stress.
- 2017Energetic approach coupled with analytic solutions for the evaluation of residual stress
- 2012Finding and using inverse analyic methods for coupled thermo-elastic problems
Places of action
Organizations | Location | People |
---|
conferencepaper
Energetic approach coupled with analytic solutions for the evaluation of residual stress
Abstract
This paper is part of a more general mixed analytical/numerical strategy aiming at computing residual stresses of metallic strips after coiling process. Multiphase transitions and transformation induced plasticity occur during coil cooling. Thus, each layer of coil is subjected to an overall eigenstrain that can be sufficient to generate macroscopic plastic deformations. For each layer, a solution of the problem of an elastic-plastic hollow cylinder undergoing an arbitrary eigenstrain is derived. Mathematical developments relies on the linear inhomogeneous Navier equation by dealing with plasticity through the introduction of a deviatoric unknown plastic strain. An analytical solution is obtained in the form of series expansion, for any trial plastic strain. Then, an energetic principle enables to determine the plastic strain chosen as a solution of the problem. Practically, a numerical optimization procedure is performed directly on coefficients of the plastic strain series expansion.