People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zia, Abdul Wasy
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodescitations
- 2024Sputtered Hard Carbon for High-Performance Energy Storage Batteries
- 2024Designing Molybdenum Trioxide and Hard Carbon Architecture for Stable Lithium‐Ion Battery Anodescitations
- 2024Wear-resistant and adherent nanodiamond composite thin film for durable and sustainable silicon carbide mechanical seals.citations
- 2024Circular usage of waste cooking oil towards green electrical discharge machining process with lower carbon emissionscitations
- 2024Oxygen concentration – a governing parameter for microstructural tailoring of duplex AlCrSiON coatings for superior mechanical, tribological, and anti-corrosion performancecitations
- 2024Wear-resistant and Adherent Nanodiamond Composite Thin Film for Durable and Sustainable Silicon Carbide Mechanical Sealscitations
- 2024Role of scandium addition to microstructure, corrosion resistance, and mechanical properties of AA7085/ZrB2+Al2O3 compositescitations
- 2024Precision depth-controlled isolated silver nanoparticle-doped diamond-like carbon coatings with enhanced ion release, biocompatibility, and mechanical performancecitations
- 2023Soft diamond-like carbon coatings with superior biocompatibility for medical applicationscitations
- 2023Multi-layered Sn and Hard Carbon Architectures for Long-Term Stability and High-Capacity Lithium-Ion Battery Anodes
- 2023Role of biodegradable dielectrics toward tool wear and dimensional accuracy in Cu-mixed die sinking EDM of Inconel 600 for sustainable machiningcitations
- 2023Role of biodegradable dielectrics toward tool wear and dimensional accuracy in Cu-mixed die sinking EDM of Inconel 600 for sustainable machining
- 2023Advancing Lithium-Ion Battery Anodes: Novel Sn and Hard Carbon Architectures for Long-Term Stability and High Capacity
- 2022Disrupting biofilm and eradicating bacteria by Ag-Fe3O4@MoS2 MNPs nanocomposite carrying enzyme and antibioticscitations
- 2013Epitaxial growth of cerium oxide thin films by pulsed laser depositioncitations
- 2013Effect of Diamond like Carbon Coating Thickness on Stainless Steel Substrate
- 2012 Fracture Toughness of Plasma Coated Zirconia(ZrO₂)
- 2012Mechanical Characterization of PECVD coated Materials by Indentation Techniques and Finite Element Simulation
Places of action
Organizations | Location | People |
---|
document
Mechanical Characterization of PECVD coated Materials by Indentation Techniques and Finite Element Simulation
Abstract
Efforts have been made to deposit alumina-40 wt.% titania (AT-40) coatings AISI 1045 steel by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique. The structure, morphology and chemical composition fracture mechanisms of the coatings was studied by XRD, SEM and EDAX, The coating contain alumina and titania. The alumina has γ-Al₂O₃, θ-Al₂O₃ and α-Al₂O₃ and titania comprise of rutile and anatase phases. Vickers-indentation was used to determine the hardness and fracture toughness of coated materials. The hardness values varied with the indentation load. Experimental results indicate that Vickers hardness varied from 13.3 to 17.0 GPa. The fracture toughness obtained from Vickers indentation was in the order of 1.77-2.07 MPa· m1/2. In addition the elastic-plastic behavior was evaluated by finite element (FE) numerical analysis. FE analysis results gave insight in the fracture mechanism of the ceramic films.