People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Combeaud, Christelle
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Influence of the use of mechanically recycled pet in injection stretch blow moulding process (ISBM)
- 2023A Comparative Study on Crystallisation for Virgin and Recycled Polyethylene Terephthalate (PET): Multiscale Effects on Physico-Mechanical Propertiescitations
- 2021Effects of annealing prior to stretching on strain induced crystallization of polyethylene terephthalatecitations
- 2020Strain-induced crystallization of poly(ethylene 2,5-furandicarboxylate). Mechanical and crystallographic analysiscitations
- 2018Strain induced crystallization in biobased Poly(ethylene 2,5-furandicarboxylate) (PEF); conditions for appearance and microstructure analysiscitations
- 2017Structure and properties of polypropylene/graphene nanoplatelets microcomposites: effect of graphene size.
- 2015Thermo-mechanical behavior in Poly(methyl methacrylate) with different molecular weights.
- 2015Thermo-mechanical behavior in Poly(methyl methacrylate) with different molecular weights.
- 2015An Analysis of Transcrystallinity in Polymers
- 2010Biaxial tension on polymer in thermoforming rangecitations
- 2006Polymer processing extrusion instabilities and methods for their elimination or minimisation
Places of action
Organizations | Location | People |
---|
conferencepaper
Structure and properties of polypropylene/graphene nanoplatelets microcomposites: effect of graphene size.
Abstract
The aim of this work is to assess the potential of graphene nanoplatelets (GNP) according to their production method to improve properties of composites based on polypropylene and elaborated by melt mixing. The effects of GNP size on structural, thermal, rheological and mechanical properties of composites were investigated. Three grades of GNPs, obtained by a thermomechanical process and commercialized by Knano under KNG-180, KNG-150 and KNG-G5 references, were considered in this work. KNG-180 and KNG-150 GNPs were obtained from graphite through a three step process: i) graphite was intercalated by sulfuric acid under stirring and then washed and dried, ii) then, it underwent a thermal treatment and finally iii) the obtained expanded graphite was ultrasonicated in hydroalcoholic solution. From this step, particles were considered as graphene nanoplatelets [1]. An additional ball milling process in good solvent, followed by centrifugation, enabled to obtain thinner KNG-G5 from KNG-180 [2]. Composites were elaborated by melt mixing in an internal mixer using different conditions and thus mixing energies. The dispersion state of the composites was evaluated at different scales using SEM, TEM and X-ray diffraction. Thermal, rheological and mechanical properties of the composites were investigated. Although mechanical delamination followed by centrifugation enables to improve dispersion state of GNP in thermoplastics, PP/GNP mixtures have to be considered as non-exfoliated microcomposites. Even if, different mixing conditions were investigated, they did not affect the dispersion state. However, thermal, rheological and mechanical properties of PP/KNG-G5 composites were outstandingly close to those of thermoplastic/montmorillonite or reduced graphene nanocomposites and show positive results regarding the use of this graphene manufacturing process without chemical treatment. Ackowledgements GNPs were kindly provided by the CNRS research group project n°3661 "GDR PolyNano". References 1 G. Chen, C. Wu, W. Weng, D. Wu, W. Yan, Preparation of polystyrene/graphite nanosheet composite, Polymer. 44, 1781 (2003) 2 W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling, J. Mater. Chem. 20, 5817 (2010)