Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luizard, Paul

  • Google
  • 1
  • 4
  • 0

Technische Universität Berlin

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Laser scanning vibrometry and modal analysis to characterize a vocal fold replicacitations

Places of action

Chart of shared publication
Laval, Xavier
1 / 2 shared
Silva, Fabrice
1 / 1 shared
Hermant, Nicolas
1 / 1 shared
Pelorson, Xavier
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Laval, Xavier
  • Silva, Fabrice
  • Hermant, Nicolas
  • Pelorson, Xavier
OrganizationsLocationPeople

conferencepaper

Laser scanning vibrometry and modal analysis to characterize a vocal fold replica

  • Laval, Xavier
  • Silva, Fabrice
  • Hermant, Nicolas
  • Pelorson, Xavier
  • Luizard, Paul
Abstract

Vocal folds are composed of elastic, soft, multilayer material, and are set to various vibration regimes during phonation, while speaking or singing. To explore such vibration phenomena, a vocal folds replica has been built, allowing to control physical parameters (subglottal pressure, vocal folds stiffness, and glottal aperture) in order to understand their respective contribution. Vocal folds are imitated by latex tubes filled with water under variable pressure. The present study aims at presenting mechanical measurements performed on a single vocal fold replica by means of a shaker provided with an accelerometer in conjunction with a laser vibrometer. This vibration measurement protocol yields a series of frequency response functions over a specific area of the vocal fold. Modal analysis is then performed using an algorithm based on the least square complex exponentials (LSCE) method, which has been developed for single input-multiple output (SIMO) systems. Results are further compared with those from the rational fraction polynomial (RFP) method. Although results are in fair accordance, the observed discrepancies are quantified and discussed.

Topics
  • impedance spectroscopy