Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nezhad, Mehdi Khazaei

  • Google
  • 2
  • 7
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Molecular to Mesoscopic Design of Novel Plasmonic Materials—Combining First-Principles Approach with Electromagnetic Modellingcitations
  • 2017Extraordinary optical transmission of periodic array of subwavelength holes within titanium nitride thin film13citations

Places of action

Chart of shared publication
Mishra, Prof. Yogendra Kumar
1 / 41 shared
Sanyal, Biplab
1 / 14 shared
Rahmani, Neda
2 / 4 shared
Shabani, Alireza
2 / 7 shared
Adam, Jost
1 / 19 shared
Behdani, Mohammad
1 / 2 shared
Roknabadi, Mahmood Rezaee
1 / 3 shared
Chart of publication period
2021
2017

Co-Authors (by relevance)

  • Mishra, Prof. Yogendra Kumar
  • Sanyal, Biplab
  • Rahmani, Neda
  • Shabani, Alireza
  • Adam, Jost
  • Behdani, Mohammad
  • Roknabadi, Mahmood Rezaee
OrganizationsLocationPeople

document

Molecular to Mesoscopic Design of Novel Plasmonic Materials—Combining First-Principles Approach with Electromagnetic Modelling

  • Mishra, Prof. Yogendra Kumar
  • Sanyal, Biplab
  • Rahmani, Neda
  • Shabani, Alireza
  • Nezhad, Mehdi Khazaei
  • Adam, Jost
Abstract

To date, due to the rapid progress in science and technology, the efforts for reaching new plasmonic materials are extensively growing. Although the most often used noble metals, such as Au and Ag, demonstrate a strong optical response in plasmonics and metamaterials, some of their inherent features make them less suitable for real-world applications. In this work, we aim to seek new alternative plasmonic materials by proposing a novel and reliable method via manipulating the characteristic response of candidate compounds such as Al/Ga doped Zinc Oxide (A/GZO), ZrN, TiN and Silicon allotropes. This method merges two powerful computational approaches, namely, density functional theory (DFT) and electromagnetic (EM) simulations by the finite-element method (FEM) and more rigorous methods (e.g. TMM, RCWA). We first perform a series of DFT calculations, including the structural relaxation of plasmonic material candidates, to find the crystal structure with minimum energy, for different exchange-correlation functionals such as GGA, LDA. In a second step, we analyse the simulated material’s electronic and optical properties to illustrate potential metallic behaviour, from the viewpoint of material science, via electronic density of states (DOS), band structure and optical dispersion functions (real and imaginary parts). To evaluate the found material’s performance in a semi-real plasmonic system, we subsequently extract the optical dispersion parameters, such as refractive index data as well as Drude-Lorentz parameters of complex dielectric permittivity from our calculated DFT. We finally feed the generated optical dispersion data into an EM-solver for optical simulations of any desired optical system and investigate its efficiency for suitability in plasmonic applications. Our method comprises the possibility for verification with experimental data on each level. From there on, we can optimize digitally the molecular structure, paving the way to predict the proposed compounds’ plasmonic functionality, overcoming the persistent hurdles introduced by pure experimental works.

Topics
  • density
  • dispersion
  • compound
  • theory
  • simulation
  • zinc
  • laser emission spectroscopy
  • Silicon
  • density functional theory
  • tin
  • metamaterial
  • band structure
  • molecular structure