Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zippel, H.

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000[Chondrocyte transplantation in PGLA/polydioxanone fleece].citations

Places of action

Chart of shared publication
Sittinger, M.
1 / 3 shared
Perka, Carsten
1 / 4 shared
Schultz, O.
1 / 2 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Sittinger, M.
  • Perka, Carsten
  • Schultz, O.
OrganizationsLocationPeople

article

[Chondrocyte transplantation in PGLA/polydioxanone fleece].

  • Sittinger, M.
  • Zippel, H.
  • Perka, Carsten
  • Schultz, O.
Abstract

The transplantation of chondrogenic cells in a supportive carrier structure proved to be a promising alternative for the treatment of cartilage defects. In the study presented we focused on the transplantation of allogeneic chondrocytes in a biodegradable polymer scaffold (PGLA/Polydioxanon) in articular cartilage defects in a rabbit defect model. Isolated allogeneic chondrocytes embedded in a PGLA polymer scaffold were transplanted into osteochondrogenic defects of the patellar groove and compared with empty defects and transplants of polymer scaffolds without cells. The histological and histochemical analysis was performed after 4 and 12 weeks. The transplant integration and the architecture of the newly formed cartilage were evaluated with a semiquantitative score. After 4 weeks the development of a hyaline-like cartilage tissue of the cell-polymer-transplants was observed, after 12 weeks the defects were nearly completely filled with hyaline-like cartilage. The biodegradation of the polymer construct did not affect the histological structure of the transplant area. Defects of the groups with empty defect and polymer transplants without cells revealed no or insufficient healing indices. The study demonstrated that biodegradable polymers served as suitable carriers for the chondrocyte transplantation, which is due to the in-vitro establishment of a semi-solid cartilage transplant and the resulting effective transplant fixation into the defect. In-vivo the polymer cell transplants seem to provide a supportive microenvironment for the development of hyaline cartilage. The controlled release of morphogenic factors or bioactive molecules and the use of pluripotent mesenchymal progenitor cells opens new perspectives for the optimization of cartilage repair procedures.

Topics
  • impedance spectroscopy
  • polymer
  • defect