People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zippel, H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
[Chondrocyte transplantation in PGLA/polydioxanone fleece].
Abstract
The transplantation of chondrogenic cells in a supportive carrier structure proved to be a promising alternative for the treatment of cartilage defects. In the study presented we focused on the transplantation of allogeneic chondrocytes in a biodegradable polymer scaffold (PGLA/Polydioxanon) in articular cartilage defects in a rabbit defect model. Isolated allogeneic chondrocytes embedded in a PGLA polymer scaffold were transplanted into osteochondrogenic defects of the patellar groove and compared with empty defects and transplants of polymer scaffolds without cells. The histological and histochemical analysis was performed after 4 and 12 weeks. The transplant integration and the architecture of the newly formed cartilage were evaluated with a semiquantitative score. After 4 weeks the development of a hyaline-like cartilage tissue of the cell-polymer-transplants was observed, after 12 weeks the defects were nearly completely filled with hyaline-like cartilage. The biodegradation of the polymer construct did not affect the histological structure of the transplant area. Defects of the groups with empty defect and polymer transplants without cells revealed no or insufficient healing indices. The study demonstrated that biodegradable polymers served as suitable carriers for the chondrocyte transplantation, which is due to the in-vitro establishment of a semi-solid cartilage transplant and the resulting effective transplant fixation into the defect. In-vivo the polymer cell transplants seem to provide a supportive microenvironment for the development of hyaline cartilage. The controlled release of morphogenic factors or bioactive molecules and the use of pluripotent mesenchymal progenitor cells opens new perspectives for the optimization of cartilage repair procedures.