People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moerk, Jesper
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavitycitations
- 2021Unidirectional quantum transport in optically driven V-type quantum dot chainscitations
- 2019Systematically Varying the Active Material Volume in a Photonic Crystal Nanolaser
- 2019Doping technologies for InP membranes on silicon for nanolaserscitations
- 2018Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures
- 2018Designing Single-Photon Sources: Towards Unity
- 2018Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavitiescitations
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2017Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities
- 2017Benchmarking five computational methods for analyzing large photonic crystal membrane cavitiescitations
- 2016Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities
- 2015Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguidescitations
- 2013Ultrahigh-speed hybrid laser for silicon photonic integrated chips
- 2012Electromagnetic Scattering in Micro- and Nanostructured Materials.
- 2012Slow-light enhancement of spontaneous emission in active photonic crystal waveguides
- 2011Active III-V Semiconductor Photonic Crystal Waveguidescitations
- 2011Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization
- 2010Analysis of optical properties of strained semiconductor quantum dots for electromagnetically induced transparency
- 2010Enhanced amplified spontaneous emission in III-V semiconductor photonic crystal waveguides
- 2003On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers
Places of action
Organizations | Location | People |
---|
report
Electromagnetic Scattering in Micro- and Nanostructured Materials.
Abstract
The research fields of optical microstructures and plasmonic nanostructures are particularly active these years, and interesting applications in, e.g., quantum information technology in the former and novel types of solar cells in the latter, drive the investigations. Central in both fields is the interaction of light with matter, in the forms of semiconductors and metals in the two cases, and fundamental understanding of the interactions is important to optimize technological designs. To address this, we in the present thesis develop a formalism for determining the electric field in a homogeneous three dimensional space with spherical inhomogeneities embedded. The formalism accounts fully for the multiple reflections the field undergoes in such structures, and likewise the vectorial nature of the field is treated rigorously. The formalism is based on the Lippmann-Schwinger equation and the electromagnetic Green’s tensor and uses an expansion of the field on spherical wavefunctions. Addition theorems for these are extensively used, and all parts of the formalism are expressed analytically. With the formalism, we show that the simpler approach of modeling the spherical scatterers as polarizable dipoles, which is often alluded to in the literature, breaks down in the limit of closely spaced scattering objects. The study of metallic nanoparticles is particularly intriguing when these are in close proximity, due to the coupling of their near-fields, and the breakdown of the simpler approach reveals a need for the present formalism. Additionally, we study dimers and chains of metallic nanoparticles and analyze their spectra, when exposed to fields of different polarizations. The spectral response is highly dependent on the polarization, and we demonstrate for the dimer, under polarization along the dimer axis, a d−1/2-dependence of the relative shift of the resonance wavelength, d being the distance between the particles. This dependence on d is softer than reported earlier, and thus constitutes the foundation for a more systematic study. The correlation of distance and spectral properties may have applications within biosensing and -imaging on the nanoscale. For the chain, we demonstrate a next-nearest neighbor interaction between the nanoparticles through the study of its spectral properties. Finally, we present a calculation of the Green’s tensor for the dimer, illustrating that the formalism may likewise be used for modeling optical microstructures, e.g. three dimensional photonic crystals.