Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

John, Karin

  • Google
  • 3
  • 8
  • 73

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Thin-Film Modelling of Resting and Moving Active Droplets24citations
  • 2018Modelling of surfactant-driven front instabilities in spreading bacterial colonies49citations
  • 2010Actin based propulsion: Intriguing interplay between material properties and growth processescitations

Places of action

Chart of shared publication
Stegemerten, Fenna
1 / 1 shared
Thiele, Uwe
2 / 3 shared
Trinschek, Sarah
2 / 2 shared
Caillerie, Denis
1 / 3 shared
Ismail, Mourad
1 / 1 shared
Peyla, Philippe
1 / 2 shared
Prost, Jacques
1 / 3 shared
Raoult, Annie
1 / 2 shared
Chart of publication period
2020
2018
2010

Co-Authors (by relevance)

  • Stegemerten, Fenna
  • Thiele, Uwe
  • Trinschek, Sarah
  • Caillerie, Denis
  • Ismail, Mourad
  • Peyla, Philippe
  • Prost, Jacques
  • Raoult, Annie
OrganizationsLocationPeople

booksection

Actin based propulsion: Intriguing interplay between material properties and growth processes

  • Caillerie, Denis
  • Ismail, Mourad
  • Peyla, Philippe
  • John, Karin
  • Prost, Jacques
  • Raoult, Annie
Abstract

Eukaryotic cells and intracellular pathogens such as bacteria or viruses utilize the actin polymerization machinery to propel themselves forward. Thereby, the onset of motion and choice of direction may be the result of a spontaneous symmetry-breaking or might be triggered by external signals and preexisting asymmetries, e.g. through a previous septation in bacteria. Although very complex, a key feature of cellular motility is the ability of actin to form dense polymeric networks, whose microstructure is tightly regulated by the cell. These polar actin networks produce the forces necessary for propulsion but may also be at the origin of a spontaneous symmetry-breaking. Understanding the exact role of actin dynamics in cell motility requires multiscale approaches which capture at the same time the polymer network structure and dynamics on the scale of a few nanometers and the macroscopic distribution of elastic stresses on the scale of the whole cell. In this chapter we review a selection of theories on how mechanical material properties and growth processes interact to induce the onset of actin based motion.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • elasticity