People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grigsby, Warren
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2019A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic compositescitations
- 2019Assessing panelboard volatile organic compound emission profiles through renewables use
- 2019Volatile organic compounds (VOCs) from lauan (Shorea ssp.) plyboard prepared with kraft lignin, soy flour, gluten meal and tannincitations
- 2019Quantitative assessment and visualisation of the wood and poly(lactic acid) interface in sandwich laminate compositescitations
- 2019Using renewables in panelboard resins to influence volatile organic compound emissions from panelscitations
- 2017Flexural properties of PVC/Bamboo composites under static and dynamic - Thermal conditions: Effects of composition and water absorptioncitations
- 2017Thermal stability of processed PVC/bamboo blends: Effect of compounding procedurescitations
- 2015Synchrotron-based x-ray fluorescence microscopy in conjunction with nanoindentation to study molecular-scale interactions of phenol?formaldehyde in wood cell wallscitations
- 2015Evaluating the extent of bio-polyester polymerization in solid wood by thermogravimetric analysiscitations
- 2014Evaluating poly(lactic acid) fibre reinforcement with modified tanninscitations
- 2014Rubber-like materials prepared from copolymerization of tannin fatty acid conjugates and vegetable oilscitations
- 2012Chemical changes in Pinus radiata during torrefaction as followed by 13C CP-MAS and dipolar dephased NMR spectroscopy
- 2012IRENI-FTIR chemical imaging of wood cell walls infiltrated with phenol formaldehyde adhesive
- 2012Vegetable oil thermosets reinforced by tannin-lipid formulationscitations
- 2010Evaluation of adhesive penetration of wood fibre by nanoindentation and microscopy
- 2007Microcrystallinity and colloidal peculiarities of UF/isocyanate hybrid resinscitations
- 2007Thermal degradation of polyphenolic containing bark extracts
- 2006Activation of pine bark tannin for use in cold-set structural adhesives
- 2005Evaluation of latex adhesives containing hydrophobic cores and poly(vinyl acetate) shells: potential to reduce poly(vinyl acetate) glueline creep
- 2004X-ray photoelectron spectroscopy determination of resin coverage on MDF fibre
- 2002Interaction of wax and UF resin in MDF: quantification of wax and resin distribution by confocal microscopy
- 2002Interaction of Wax and UF Resin in MDF: Qualitative Analysis of the Relationships Between Wax and Resin on MDF Fibre
Places of action
Organizations | Location | People |
---|
document
Interaction of Wax and UF Resin in MDF: Qualitative Analysis of the Relationships Between Wax and Resin on MDF Fibre
Abstract
Both resin and paraffin wax are essential additives in the manufacture of composite panels such as MDF board. The integrity of panels is retained by the action of cured resin binding the fibre matrix with wax acting as a water repellant. While resin is only added to fibre after defibration,wax can either be added via the refiner or the blowline in the MDF process. During the MDF process,there is potential for resin and wax to come into contact with each other. However the extent,if any,of wax and resin interactions in the final panel are currently unknown. At Forest Research,where UF resin and wax have previously been independently visualised using confocal microscopy,a new procedure has been developed specifically for the simultaneous visualisation of both wax and UF resin in panels and on unpressed fibre. This technique,which utilises confocal microscopy coupled with image analysis,has enabled the quantification of coverage and distribution of both resin and wax on fibre as well as establishing the extent of wax-resin interactions. The technique can be used in two ways. Firstly it can be used for describing the location of wax and resin e.g. the coverage of fibres with wax and resin,the drop sizes and the spatial overlap between the two(quantitative analysis). Secondly,using a higher magnification the technique can also be used to describe how wax and resin interact with each other and how each of them influences the movement of wax or resin on and within the fibre(qualitative analysis). This paper will concentrate on the second part and closely examine the interaction between wax and resin.