People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grigsby, Warren
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2019A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic compositescitations
- 2019Assessing panelboard volatile organic compound emission profiles through renewables use
- 2019Volatile organic compounds (VOCs) from lauan (Shorea ssp.) plyboard prepared with kraft lignin, soy flour, gluten meal and tannincitations
- 2019Quantitative assessment and visualisation of the wood and poly(lactic acid) interface in sandwich laminate compositescitations
- 2019Using renewables in panelboard resins to influence volatile organic compound emissions from panelscitations
- 2017Flexural properties of PVC/Bamboo composites under static and dynamic - Thermal conditions: Effects of composition and water absorptioncitations
- 2017Thermal stability of processed PVC/bamboo blends: Effect of compounding procedurescitations
- 2015Synchrotron-based x-ray fluorescence microscopy in conjunction with nanoindentation to study molecular-scale interactions of phenol?formaldehyde in wood cell wallscitations
- 2015Evaluating the extent of bio-polyester polymerization in solid wood by thermogravimetric analysiscitations
- 2014Evaluating poly(lactic acid) fibre reinforcement with modified tanninscitations
- 2014Rubber-like materials prepared from copolymerization of tannin fatty acid conjugates and vegetable oilscitations
- 2012Chemical changes in Pinus radiata during torrefaction as followed by 13C CP-MAS and dipolar dephased NMR spectroscopy
- 2012IRENI-FTIR chemical imaging of wood cell walls infiltrated with phenol formaldehyde adhesive
- 2012Vegetable oil thermosets reinforced by tannin-lipid formulationscitations
- 2010Evaluation of adhesive penetration of wood fibre by nanoindentation and microscopy
- 2007Microcrystallinity and colloidal peculiarities of UF/isocyanate hybrid resinscitations
- 2007Thermal degradation of polyphenolic containing bark extracts
- 2006Activation of pine bark tannin for use in cold-set structural adhesives
- 2005Evaluation of latex adhesives containing hydrophobic cores and poly(vinyl acetate) shells: potential to reduce poly(vinyl acetate) glueline creep
- 2004X-ray photoelectron spectroscopy determination of resin coverage on MDF fibre
- 2002Interaction of wax and UF resin in MDF: quantification of wax and resin distribution by confocal microscopy
- 2002Interaction of Wax and UF Resin in MDF: Qualitative Analysis of the Relationships Between Wax and Resin on MDF Fibre
Places of action
Organizations | Location | People |
---|
document
Activation of pine bark tannin for use in cold-set structural adhesives
Abstract
Many have recognised the potential of tannins such as those extracted from bark,to substitute more expensive petrochemical components in adhesives for wood gluing applications. Reported is an investigation on the dissolution and reactivity of pine bark tannin in adhesive bond strength development,describing attempts to overcome the low cross-link density and vitrification usually associated with such adhesive systems. Use of tannin/phenol resorcinol formaldehyde adhesives determined a preference for spray dried pine bark extracts over the concentration of the aqueous extract. Spray dried tannin needed to be adequately mixed and dissolved prior to blending with PRF resin to achieve good adhesive bond strength. Adjustment of water and sulfite tannin solution pH increased solubility and led to substantially greater adhesive performance. Incremental increases in tannin pH led to greater adhesive strength and wood failure with an optimum tannin solution pH of ca. pH 9,which was a balance between tannin/PRF glue mix properties including viscosity,reactivity and adhesive strength.