Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hasdeo, Eddwi Hesky

  • Google
  • 8
  • 24
  • 43

University of Luxembourg

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2022Thermoelectric properties of semiconducting materials with parabolic and pudding-mold band structures7citations
  • 2021Effects of topological band structure on thermoelectric transport of bismuthene11citations
  • 2021A Comparative Study of Thermoelectric Properties of Monolayer, Bilayer and Bulk CrI3citations
  • 2021Investigation of electron and phonon transport in Bi-doped CaMnO3 for thermoelectric applications18citations
  • 2021Non-universal Scaling of Thermoelectric Efficiency in 3D and 2D Thermoelectric Semiconductors2citations
  • 2021Kerr effect in tilted nodal loop semimetals5citations
  • 2020Non-universal Scaling of Thermoelectric Efficiency in 3D and 2D Thermoelectric Semiconductorscitations
  • 2020Characterization of electron and phonon transports in Bi-doped CaMnO3 for thermoelectric applicationscitations

Places of action

Chart of shared publication
Nugraha, Ahmad R. T.
1 / 1 shared
Estellé, Patrice
1 / 15 shared
Adhidewata, Jyesta M.
1 / 1 shared
Gunara, Bobby E.
1 / 1 shared
Wella, Sasfan Arman
1 / 1 shared
Gaffar, Muhammad
1 / 1 shared
Hanna, M. Y.
2 / 2 shared
Nugraha, A. R. T.
2 / 2 shared
Suprayoga, E.
3 / 3 shared
Paengson, S.
2 / 2 shared
Kurniawan, B.
2 / 2 shared
Hanna, My
1 / 1 shared
Nugraha, Art
1 / 1 shared
Putri, Wbk
1 / 1 shared
Singsoog, K.
2 / 2 shared
Seetawan, T.
2 / 3 shared
Munazat, Dr
1 / 1 shared
Octavian, Kevin
2 / 2 shared
Ekström, Carl Johan Ingvar
1 / 1 shared
Schmidt, Thomas
1 / 21 shared
Farias, Maria Belen
1 / 1 shared
Putri, W. B. K.
1 / 1 shared
Nurhuda, M.
1 / 2 shared
Munazat, D. R.
1 / 1 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Nugraha, Ahmad R. T.
  • Estellé, Patrice
  • Adhidewata, Jyesta M.
  • Gunara, Bobby E.
  • Wella, Sasfan Arman
  • Gaffar, Muhammad
  • Hanna, M. Y.
  • Nugraha, A. R. T.
  • Suprayoga, E.
  • Paengson, S.
  • Kurniawan, B.
  • Hanna, My
  • Nugraha, Art
  • Putri, Wbk
  • Singsoog, K.
  • Seetawan, T.
  • Munazat, Dr
  • Octavian, Kevin
  • Ekström, Carl Johan Ingvar
  • Schmidt, Thomas
  • Farias, Maria Belen
  • Putri, W. B. K.
  • Nurhuda, M.
  • Munazat, D. R.
OrganizationsLocationPeople

article

Non-universal Scaling of Thermoelectric Efficiency in 3D and 2D Thermoelectric Semiconductors

  • Hasdeo, Eddwi Hesky
  • Octavian, Kevin
Abstract

We performed the first-principles calculation on common thermoelectric semiconductors Bi2Te3, Bi2Se3, SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturization of materials does not generally increase the thermoelectric figure of merit (ZT) according to the Hicks and Dresselhaus (HD) theory. For example, ZT values of 2D PbTe (0.32) and 2D SiGe (0.04) are smaller than their 3D counterparts (0.49 and 0.09, respectively). Meanwhile, the ZT values of 2D Bi2Te3 (0.57) and 2D Bi2Se3 (0.43) are larger than the bulks (0.54 and 0.18, respectively), which agree with HD theory. The HD theory breakdown occurs because the band gap and band flatness of the materials change upon dimensional reduction. We found that flat bands give a larger electrical conductivity (σ) and electronic thermal conductivity (κel) in 3D materials, and smaller values in 2D materials. In all cases, maximum ZT values increase proportionally with the band gap and saturate for the band gap above 10 kBT. The 2D Bi2Te3 and Bi2Se3 obtain a higher ZT due to the flat corrugated bands and narrow peaks in their DOS. Meanwhile, the 2D PbTe violates HD theory due to the flatter bands it exhibits, while 2D SiGe possesses a small gap Dirac-cone band.

Topics
  • theory
  • semiconductor
  • thermal conductivity
  • electrical conductivity