People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gibson, Ian
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2023Impact of powder reusability on batch repeatability of Ti6Al4V ELI for PBF-LB industrial productioncitations
- 2023Estimating minimum required dwell time for the heat sealing of talc containing polypropylene/low‐density polyethylene packaging filmscitations
- 2023Effects of film tension and contamination on the seal quality of flexible food packaging films made of polypropylene and low density polyethylene blends containing talc fillercitations
- 2023Heat treatment for metal additive manufacturingcitations
- 2023Towards more homogeneous character in 3D printed photopolymers by the addition of nanofillerscitations
- 2022Sandwich structure printing of Ti-Ni-Ti by directed energy depositioncitations
- 2021Build position-based dimensional deviations of laser powder-bed fusion of stainless steel 316Lcitations
- 2021A critical review of corrosion characteristics of additively manufactured stainless steelscitations
- 2021On the role of process parameters on meltpool temperature and tensile properties of stainless steel 316L produced by powder bed fusioncitations
- 2020Porous materials additively manufactured at low energycitations
- 2020Modelling of laser powder bed fusion process and analysing the effective parameters on surface characteristics of Ti-6Al-4Vcitations
- 2020Corrosion behaviour of additively manufactured 316L stainless steel
- 2020A review of technological improvements in laser-based powder bed fusion of metal printerscitations
- 2020The effect of process parameters and mechanical properties of direct energy deposited stainless steel 316
- 2020On the role of wet abrasive centrifugal barrel finishing on surface enhancement and material removal rate of LPBF stainless steel 316Lcitations
- 2020Pulsed mode selective laser melting of porous structures: Structural and thermophysical characterizationcitations
- 2019Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser meltingcitations
- 2019Investigation on the effect of heat treatment and process parameters on the tensile behaviour of SLM Ti-6Al-4V partscitations
- 2019An Overview: Laser-Based Additive Manufacturing for High Temperature Tribologycitations
- 2019Melt Pool Monitoring for the Laser Powder Bed Fusion Process
- 2019On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser meltingcitations
- 2019Directed energy deposition and characterization of high-carbon high speed steelscitations
- 2019A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4Vcitations
- 2018Mass transfer and flow in additive manufacturing of a spherical componentcitations
- 2018Accelerating Experimental Design by Incorporating Experimenter Hunchescitations
- 2018A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical componentscitations
- 2018Characterizing the effect of cutting condition, tool path, and heat treatment on cutting forces of selective laser melting spherical component in five-axis millingcitations
- 2018Investigation on the effect of a pre-center drill hole and tool material on thrust force, surface roughness, and cylindricity in the drilling of Al7075citations
- 2018Rheological characterization of process parameters influence on surface quality of Ti-6Al-4V parts manufactured by selective laser meltingcitations
- 2017Production of Ti-6Al-4V acetabular shell using selective laser meltingcitations
- 2017The Effect of Vibration during Friction Stir Welding on Corrosion Behavior, Mechanical Properties, and Machining Characteristics of Stir Zonecitations
- 2017Improving EDM Process on AZ31 Magnesium Alloy towards Sustainable Biodegradable Implant Manufacturingcitations
- 2017On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4Vcitations
- 2016An improved static model for tool deflection in machining of Ti–6Al–4V acetabular shell produced by selective laser meltingcitations
- 2016A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cupcitations
- 2013Process and material behavior modeling for a new design of micro-additive fused depositioncitations
- 2013Process and material behavior modeling for a new design of micro-additive fused depositioncitations
- 2010The future of electronic products
- 2009Composite PLDLLA/TCP Scaffolds for Bone Engineeringcitations
- 2008Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineeringcitations
Places of action
Organizations | Location | People |
---|
document
Corrosion behaviour of additively manufactured 316L stainless steel
Abstract
<p>Additive manufacturing (AM) has been the focus of innovation in manufacturing industries during the last decade owing to its advantages over traditional manufacturing, particularly its capability to build complex 3D geometries in a single step that can save a lot of time and money. Selective laser melting (SLM), as a powder-bed AM technique, builds an object at rapid solidification rates in a layer-upon-layer manner using a high-energy laser beam. This process occurs under an extremely high temperature and rapid cooling conditions, leading to a microstructure that is different from that of the conventionally-produced counterpart. Although lots of research has been devoted to understanding the physical concept of SLM processing and mechanical properties, corrosion performance of parts produced by SLM has not been sufficiently explored. In this paper, an attempt was made to explain how SLM processing influences corrosion performance of type 316L stainless steel with an emphasis on localized corrosion, intergranular corrosion, and erosion-corrosion properties. It has been found that, in the case of a high-density SLM-produced specimen, the localised and intergranular corrosion resistances showed significant improvements compared to their commercial counterpart. While the SLM-produced 316L stainless steel exhibited a weaker erosion-corrosion resistance relative to the commercial one. Mechanisms behind this unique corrosion behaviour were briefly discussed based on electrochemical tests and microscopy analysis.</p>