Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moeller, P.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Dimethyl Ether (DME) - Development and Test of the New Volatile Fuel Tribo-Tester VFTTcitations

Places of action

Chart of shared publication
Sorenson, Spencer C.
1 / 2 shared
Sivebæk, Ion Marius
1 / 21 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Sorenson, Spencer C.
  • Sivebæk, Ion Marius
OrganizationsLocationPeople

document

Dimethyl Ether (DME) - Development and Test of the New Volatile Fuel Tribo-Tester VFTT

  • Sorenson, Spencer C.
  • Sivebæk, Ion Marius
  • Moeller, P.
Abstract

Over the past few years, dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines. The characteristics of engines fuelled with this advantageous fuel, DME, are low noise and clean emissions with virtually no particulate matter. The toxicity of DME is low. This issue has been thoroughly investigated as DME is commonly used as an aerosol propellant.A significant problem when fuelling diesel engines with DME is that the injection equipment breaks down rapidly due to extensive wear. Two main parameters are the causes for these insufficient lubrication qualities of DME: The lubricity and the viscosity. In former works these properties of DME were established to be very low. They can be raised by additising DME so that it acquires the same physical properties as diesel oil. In this case the DME blend is mainly composed of additive though. This means that the emission advantage of DME is significantly reduced then.As a result of the above, the work described in this paper was initiated. It introduces the search for materials that can cope with the properties of pure DME. In order to do so, a method capable of testing materials in DME was developed: The new volatile fuel tribo-tester (VFTT). This apparatus can cope with the physical properties of DME as it can be pressurised. The test rig has a block on ring configuration with the possibility of varying the pressure between the test specimens. During a test the load, the friction coefficient and the wear amount are measured. These parameters are then compared with those obtained for diesel oil lubricating two steel surfaces in order to establish whether the chosen materials will ensure full lifetime of the injection equipment.

Topics
  • impedance spectroscopy
  • surface
  • steel
  • viscosity
  • toxicity