Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tuduri, Johann

  • Google
  • 1
  • 6
  • 0

Bureau de Recherches Géologiques et Minières

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Experimental simulation and predictive modelling of rare earth element enrichment in carbonatites and alkaline magmas.citations

Places of action

Chart of shared publication
Bailly, Laurent
1 / 1 shared
Massuyeau, Malcolm
1 / 1 shared
Iacono-Marziano, Giada
1 / 8 shared
Melleton, Jérémie
1 / 1 shared
Gaillard, Fabrice
1 / 7 shared
Nabyl, Zineb
1 / 5 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Bailly, Laurent
  • Massuyeau, Malcolm
  • Iacono-Marziano, Giada
  • Melleton, Jérémie
  • Gaillard, Fabrice
  • Nabyl, Zineb
OrganizationsLocationPeople

conferencepaper

Experimental simulation and predictive modelling of rare earth element enrichment in carbonatites and alkaline magmas.

  • Bailly, Laurent
  • Massuyeau, Malcolm
  • Iacono-Marziano, Giada
  • Melleton, Jérémie
  • Tuduri, Johann
  • Gaillard, Fabrice
  • Nabyl, Zineb
Abstract

International audience ; Carbonatites and alkaline magmas are key pieces of the deep carbon cycle and constitute one of the principal resources of rare metals including REE. Several experimental studies have tackled the rare metal partitioning between immiscible carbonate and silicate liquids (Martin et al. 2013; Veskler et al. 1998, 2012). They show negative to massive enrichments in the carbonate liquid. However, no prevailing cause has been clearly isolated as such enrichments can be ruled by experimental conditions (P, T, ƒO 2), melt compositions (water and alkali contents), or technical issues such as unequilibrated experiments. The aim of this study is to simulate, by HP-HT experiments in the nephelinite-carbonatite system, crystal fractionation and immiscibility between carbonate and silicate liquids, in order to assess the factors ruling REE enrichment during the differentiation of alkaline magmas. Thirty experimental charges were synthetized using piston-cylinder and internally heated pressure vessel. The partitioning of REE between carbonate liquids, silicate liquids and crystals (pyroxene, calcite, nephelinite, perovskite, titanite) has been characterized. REE partition coefficients between carbonate and silicate liquid increase while Ca partition coefficient increases, suggesting that both have the same behavior. Also, the more the silicate liquid is polymerized, the more REE are concentrated into carbonate liquids. The Ca partition coefficient has been thus calibrated by an empirical model based on the silicate melt composition. This study reveals the optimum conditions for which carbonatite melts get enriched by >10 times with respect to the residual silicate melts. This predictive approach may serve as guide for prospection of REE-enriched carbonatites.

Topics
  • perovskite
  • impedance spectroscopy
  • Carbon
  • experiment
  • simulation
  • melt
  • rare earth metal
  • fractionation