Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lysgaard, Steen

  • Google
  • 3
  • 9
  • 12

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulations6citations
  • 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes6citations
  • 2013Computational analysis of gas-solid interactions in materials for energy storage and conversioncitations

Places of action

Chart of shared publication
Appiah, Williams Agyei
2 / 6 shared
Gollas, Bernhard
2 / 10 shared
Stark, Anna
2 / 2 shared
Garcia-Lastra, Juan Maria
1 / 2 shared
Chang, Jin Hyun
2 / 7 shared
Jankowski, Piotr
2 / 15 shared
Bhowmik, Arghya
2 / 8 shared
Busk, Jonas
2 / 2 shared
García Lastra, Juan Maria
1 / 15 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Appiah, Williams Agyei
  • Gollas, Bernhard
  • Stark, Anna
  • Garcia-Lastra, Juan Maria
  • Chang, Jin Hyun
  • Jankowski, Piotr
  • Bhowmik, Arghya
  • Busk, Jonas
  • García Lastra, Juan Maria
OrganizationsLocationPeople

thesis

Computational analysis of gas-solid interactions in materials for energy storage and conversion

  • Lysgaard, Steen
Abstract

The extensive use of fossil fuels are harmful to the climate and the general standard of living due to global warming effects and pollution. Thus the rising energy needs in the World caused by an increase in both population and wealth especially in developing countries will have to be met by a renewable energy production. Sustainable energy sources such as solar or wind power are not constant and efficient methods firstly to convert electricity into chemical energy and secondly to store the high energy materials are needed.<br/>In this thesis both issues of conversion and storage are treated. The focus is specifically on the investigation of catalytic materials for electrochemical CO2 fixation into fuels as well as ammonia storage materials, using computational methods relying on density functional theory (DFT) and effective medium theory (EMT) calculations as well as a genetic algorithm.<br/>Nanoparticles of binary alloys have previously been shown to be catalytically active for electrochemical CO2 fixation. The stability of the nanoparticles is critical for a catalytic system. We have developed a method to determine the structure and composition of nanoparticles under reactive conditions. This method involves a genetic algorithm for which efficient propagation operators have been implemented and tested on the Cu-Ni alloy system. The algorithm is able to predict the lowest energy structure and composition for the most stable Cu-Ni stoichiometry. At standard conditions in an oxygen atmosphere the particle surface is characterized by regions of Cu atoms and regions of Ni atoms with adsorbed oxygen. Future studies will predict which Cu-Ni stoichiometry will produce a catalytically active particle composition.<br/>Metal ammine chlorides e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can display high energy storage capacity combined with fast kinetics. We have determined the thermodynamically stable phases of strontium chloride ammines, including the diammine phase, Sr(NH3)2Cl2, that depending on temperature and pressure has a slightly higher or lower stability than the monoammine, explaining why the diammine is only found in certain experiments. We have furthermore determined a stable surface state of ammonia in SrCl2 ammines and identified its implications on the ab- and desorption kinetics.<br/>Metal salts often bind ammonia and water molecules in a similar structural coordination. We have studied the competitive exchange and diffusion processes of water and ammonia in magnesium chloride hexammine and hexahydrate as a method for non-thermal release of ammonia. A mixed phase containing both water and ammonia have been shown to be stable in a small region around room temperature.<br/>It is possible to shift the release thermodynamics in metal ammine salts by mixing two or more materials, resulting possibly in a mixed metal ammine salt with superior properties regarding energy content and release temperature. We have used a genetic algorithm to predict several stable mixed metal ammines in model structures with release temperatures in an attractive range for applications in the transport sector.

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • surface
  • phase
  • theory
  • experiment
  • Oxygen
  • Magnesium
  • Magnesium
  • reactive
  • Strontium
  • density functional theory