People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Phillips, M. R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2007A comparison of the mechanical properties and the impact of contact induced damage in a- and c- axis ZnO single crystals
- 2006Observation of blue shifts in ZnO/ZnMgO multiple quantum well structures by ion-implantation induced intermixingcitations
- 2000Surface disordering and nitrogen loss in GaN under ion bombardment
Places of action
Organizations | Location | People |
---|
article
Surface disordering and nitrogen loss in GaN under ion bombardment
Abstract
The damage build-up and amorphization behavior in wurtzite GaN films under a wide range of implant conditions are studied by Rutherford backscattering / channeling spectrometry, transmission electron microscopy, and cathodoluminescence spectroscopy. A strong surface peak of lattice disorder, in addition to the expected damage peak in the region of the maximum of nuclear energy loss, has been observed for all implant conditions of this study. Capping of GaN with SiO and SiN layers prior to implantation does not eliminate surface disordering. This may suggest that nitrogen loss is not the main reason for the observed enhanced surface disorder, but, rather, the GaN surface acts as a strong sink for migrating point defects. However, pronounced loss of N during ion bombardment is observed for high dose implantation when the near-surface region is amorphized. Moreover, after amorphization, annealing at temperatures above about 400 °C leads to complete decomposition of the near-surface layer.