People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schiøtz, Jakob
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Beam induced heating in electron microscopy modeled with machine learning interatomic potentialscitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2022Machine-Learning Assisted Exit-wave Reconstruction for Quantitative Feature Extraction
- 2021Reconstructing the exit wave in high-resolution transmission electron microscopy using machine learningcitations
- 2021Electron beam effects in high-resolution transmission electron microscopy investigations of catalytic nanoparticles
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowire:Implications for Nanostructure Synthesiscitations
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowirecitations
- 2020In Situ Study of the Motion of Supported Gold Nanoparticles
- 2017Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticlescitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2017Nanocrystalline metals: Roughness in flatlandcitations
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Correlation between diffusion barriers and alloying energy in binary alloyscitations
- 2016Pt x Gd alloy formation on Pt(111): Preparation and structural characterizationcitations
- 2015Controlling the Activity and Stability of Pt-Based Electrocatalysts By Means of the Lanthanide Contraction
- 2010Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glassescitations
- 2010Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glassescitations
- 2007Simulations of boundary migration during recrystallization using molecular dynamicscitations
- 2007Simulations of boundary migration during recrystallization using molecular dynamicscitations
- 2007An interatomic potential for studying CuZr bulk metallic glassescitations
- 2006Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glassescitations
- 2004Simulation of Cu-Mg metallic glass: Thermodynamics and structurecitations
- 2004Atomistic simulations of Mg-Cu metallic glasses: Mechanical propertiescitations
- 2004Simulations of intergranular fracture in nanocrystalline molybdenumcitations
- 2003A maximum in the strength of nanocrystalline copper
Places of action
Organizations | Location | People |
---|
conferencepaper
Controlling the Activity and Stability of Pt-Based Electrocatalysts By Means of the Lanthanide Contraction
Abstract
In order to reduce the Pt loading at the cathode of proton exchange membrane fuel cells (PEMFCs) more active and stable catalysts are needed to drive the oxygen reduction reaction. Most research has focussed on achieving this by alloying Pt with Fe, Co, Ni or Cu [1,2]. However, these compounds typically degrade under PEMFC conditions, due to dealloying. Alloys of Pt and lanthanides may be inherently less prone to dealloying under reactions conditions, due to their negative enthalpy of formation [2-4].<br/><br/>Herein we present a systematic study on the trends in activity of seven novel Pt-lanthanide electrodes (Pt5La, Pt5Ce, Pt5Sm, Pt5Gd, Pt5Tb, Pt5Dy and Pt5Tm). The materials are highly active, presenting a 3 to 6-fold activity enhancement over Pt [3-5], amongst the most active polycrystalline Pt-based catalyst ever reported. Moreover, our recent study showed that PtxGd is highly active in the nanoparticulate form [6]. On the bulk alloys, a Pt overlayer with a thickness of few Pt layers is formed onto the bulk alloys by acid leaching (Fig. 1A) [3-5]. The ORR activity versus the lattice parameter obtained by X-ray diffraction measurements follows a volcano relationship (Fig. 1B). Furthermore, we explain the trends in stability, and present the lattice parameter as a new descriptor that controls both the activity and stability of these materials. Using the lanthanide contraction we demonstrate that the electrocatalytic performance can be engineered by tuning the Pt-Pt distance.