People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wrzesien, Andrzej
University of the West of Scotland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Lateral resistance performance evaluation of cold-formed steel zero-tolerance bolted moment-resisting framescitations
- 2019Experimental cyclic performance of cold-formed steel bolted moment resisting framescitations
- 2018Stressed skin design of steel sheeting panels – Part 2
- 2016Sustainable applications of cold-formed steel structurescitations
- 2012Effect of reduced joint strength and semi-rigid joints on cold-formed steel portal frames
- 2009The ultimate strength and stiffness of modern roof systems with hat-shaped purlins
- 2009Stressed skin action of the roof systems with hat-shaped purlins
Places of action
Organizations | Location | People |
---|
document
Stressed skin design of steel sheeting panels – Part 2
Abstract
In this paper, the strength and stiffness of different roof panels were investigated, in order to establish their ability to act as in-plane diaphragms for stressed skin design of cold-formed steel portal frames. A total of 6 roof panels, approximately 3 x 3m, were examined by testing with sheeting profiles fixed on 4 sides. A variety of sheeting profiles in two industry standard thicknesses of 0.5 and 0.7mm were tested, all using top-hat shaped purlins fixed with self-drilling, self-tapping screws. The experimental strength and stiffness of each panel were then compared against existing design methods. The Finite Element Analysis (FEA) modelling techniques were also<br/>presented and validated against series of full-scale tests. The FEA results have shown that the ‘true’ level of loading transferred via shear connector screws was on average 13% lower than that assumed by standard design methods. On the contrary, seam connections failure, according to FEA results, have governed a design in all of the analysed cases and the analytical method overestimated shear resistances of the panels by 45% and 35% in case of 0.5mm and 0.7mm thick sheeting profiles respectively. It was demonstrated that FEA results have represented the upper bound of experimental shear stiffness, with a very close prediction for<br/>0.5mm thick sheeting profiles. Overall all, the tested panels demonstrated an average 41% greater flexibility then this predicted using FEA models.