People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pries, Julian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022The glass transition of water, insight from phase change materialscitations
- 2022Fragile-to-Strong Transition in Phase-Change Material Ge 3 Sb 6 Te 5citations
- 2021The potential of chemical bonding to design crystallization and vitrification kineticscitations
- 2021Crystallization and Vitrification Kinetics by Design: The Role of Chemical Bonding
- 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge 15 Te 85citations
- 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge<sub>15</sub>Te<sub>85</sub>citations
- 2019Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge 2 Sb 2 Te 5citations
Places of action
Organizations | Location | People |
---|
document
Crystallization and Vitrification Kinetics by Design: The Role of Chemical Bonding
Abstract
Controlling a state of material between its crystalline and glassy phase has fostered many real-world applications. Nevertheless, design rules for crystallization and vitrification kinetics still lack predictive power. Here, we identify stoichiometry trends for these processes in phase change materials, i.e. along the GeTe-GeSe, GeTe-SnTe, and GeTe-Sb2Te3 pseudo-binary lines employing a pump-probe laser setup and calorimetry. We discover a clear stoichiometry dependence of crystallization speed along a line connecting regions characterized by two fundamental bonding types, metallic and covalent bonding. Increasing covalency slows down crystallization by six orders of magnitude and promotes vitrification. The stoichiometry dependence is correlated with material properties, such as the optical properties of the crystalline phase and a bond indicator, the number of electrons shared between adjacent atoms. A quantum-chemical map explains these trends and provides a blueprint to design crystallization kinetics.