Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Callens, Freddy

  • Google
  • 4
  • 16
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020UNDERSTANDING DOPANT INCORPORATION IN METAL ORGANIC FRAMEWORKS VIA ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPYcitations
  • 2020Understanding dopant incorporation in metal organic frameworks via electron paramagnetic resonance spectroscopy (lecture, 38 min.)citations
  • 2017Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V-IV dopant ions24citations
  • 2009ENDOR in field-frequency space: orientation, species and quantum state selectioncitations

Places of action

Chart of shared publication
Vrielinck, Henk
4 / 7 shared
Maes, Kwinten
2 / 3 shared
Van Landeghem, Melissa
1 / 6 shared
Gast, Peter
1 / 3 shared
Goovaerts, Etienne
1 / 6 shared
Deduytsche, Davy
1 / 5 shared
Detavernier, Christophe
1 / 72 shared
Vincze, Laszlo
1 / 8 shared
Depauw, Hannes
1 / 2 shared
Leus, Karen
1 / 7 shared
Nevjestic, Irena
1 / 1 shared
Tack, Pieter
1 / 7 shared
Tarpan, Mihaela Adeluta
1 / 1 shared
Zverev, Dmitry
1 / 1 shared
Loncke, Frank
1 / 1 shared
De Cooman, Hendrik
1 / 1 shared
Chart of publication period
2020
2017
2009

Co-Authors (by relevance)

  • Vrielinck, Henk
  • Maes, Kwinten
  • Van Landeghem, Melissa
  • Gast, Peter
  • Goovaerts, Etienne
  • Deduytsche, Davy
  • Detavernier, Christophe
  • Vincze, Laszlo
  • Depauw, Hannes
  • Leus, Karen
  • Nevjestic, Irena
  • Tack, Pieter
  • Tarpan, Mihaela Adeluta
  • Zverev, Dmitry
  • Loncke, Frank
  • De Cooman, Hendrik
OrganizationsLocationPeople

document

UNDERSTANDING DOPANT INCORPORATION IN METAL ORGANIC FRAMEWORKS VIA ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

  • Callens, Freddy
  • Vrielinck, Henk
  • Maes, Kwinten
Abstract

Electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) provide detailed information on the nearest environment of paramagnetic ions through symmetry and hyperfine interactions. They are thus perfectly suited for determining the location of paramagnetic states of transition metal and lanthanide ions in insulating materials.In recent years our EPR and ENDOR research has mainly focused on understanding how metal dopant ions get incorporated in metal organic frameworks (MOFs). These crystalline, highly porous materials, consisting of metal-inorganic nodes connected by organic struts, have a wide range of potential applications, e.g. in gas storage, separation, sensing and heterogeneous catalysis. Combining various metals in the same framework may lead to new or improved functionality, or allow to build in an metal ion with desired properties in an inert and highly stable host.1 The rationale behind doping of MOFs is thus similar as for classical oxide and halide materials.MOFs are most often synthesized via solvothermal methods. Metal doping occurs by adding dopants to the solution during synthesis or via post-synthesis ion exchange reactions in solution. These procedures do not necessarily only lead to simple metal substitution. In this presentation, we illustrate this with our recent work on vanadium doping of a (Al-OH)-biphenyl-dicarboxylate MOF (DUT-5),2 where we combine EPR and ENDOR with infrared spectroscopy, X-ray diffraction and electron microscopy.1. S. Abednatanzi, P. Gohari Derakhshandeh, H. Depauw, F.-X. Coudert, H. Vrielinck, P. Van Der Voort,and K. Leus, Chem. Soc. Rev. (2019) 48, p. 2535-2565.DOI: 10.1039/c8cs00337h2. K. Maes, I. Nevjestić, H. Depauw, K. Leus, P. Van Der Voort, H. Vrielinck, F. Callens, Opt. Mater. (2019) 94, p. 217-223.DOI: 10.1016/j.optmat.2019.05.050

Topics
  • porous
  • impedance spectroscopy
  • x-ray diffraction
  • electron microscopy
  • electron spin resonance spectroscopy
  • Lanthanide
  • vanadium
  • infrared spectroscopy
  • microwave-assisted extraction
  • electron nuclear double resonance spectroscopy