People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rebollo, Francisco Javier Aparicio
Consejo Superior de Investigaciones Científicas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Improved strain engineering of 2D materials by adamantane plasma polymer encapsulationcitations
- 2022Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibilitycitations
- 2020Encapsulation of perovskite solar cells with ultrathin plasma polymers for moisture protection and water resistance
- 2019Encapsulation of perovskite solar cells and supported nanostructures by ultrathin plasma polymers
- 2016Multifunctional organic thin films by remote plasma assisted vacuum deposition
- 2016Solvent-less synthesis of organic photonic nanocomposite thin films by remote plasma assited vacuum deposition
- 2013Effect of the substrate temperature on the chemical composition of propanethiol plasma polymer films
- 2010Incorporation of Luminescent Nanometric Films in Photonic Crystals and Devices for the Development of Photonic Sensors
- 2009Remote Microwave Plasmas for the Synthesis of Active Optical Thin Films for Photonic Applications
Places of action
Organizations | Location | People |
---|
document
Effect of the substrate temperature on the chemical composition of propanethiol plasma polymer films
Abstract
In this work, aiming to gain new insights on the layer growth mechanism of propanethiol plasma polymers, the influence of the substrate temperature on the chemical composition of the coatings was investigated. The examination of the data reveals a strong dependence between the sulfur content and the substrate temperature through the presence of trapped sulfur-based molecules in the plasma polymer network. This works paves the way for a better control of the layer properties.