People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Horne, Mike
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2021CdS-Enhanced Ethanol Selectivity in Electrocatalytic CO2 Reduction at Sulfide-Derived Cu-Cdcitations
- 2019Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivitycitations
- 2019Electrochemically controlled deposition of ultrathin polymer electrolyte on complex microbattery electrode architecturescitations
- 2018Catalytic Static Mixer Technology for use in Continuous Flow Hydrogenations
- 2018Integrating polymer electrolytes: A step closer to 3D-Microbatteries for MEMS
- 2018Reductive aminations using a 3D printed supported metal(0) catalyst systemcitations
- 2017A step closer to 3D-Microbatteries for sensors: integrating polymer electrolytes
- 2011Aluminium coordination chemistry in ionic liquid/AlCl3 mixtures
- 2004The application of anthraquinone redox catalysts for accelerating the aeration step in the becher processcitations
Places of action
Organizations | Location | People |
---|
document
A step closer to 3D-Microbatteries for sensors: integrating polymer electrolytes
Abstract
Today’s sensor technology is undergoing a phase of miniaturisation to suit the requirements of many applications. These include, amongst others, medical devices and environmental monitoring. In many instances it is desirable for miniaturised sensors to operate wirelessly and autonomously, requiring a mountable and rechargeable power source of very small dimensions.Current battery technology is not able to meet the demands of sophisticated miniaturised sensor devices. This project aims to develop a novel 3D-structured microbattery to power such miniaturised sensor devices. Here we present our approach to assemble a 3D-structured device with a particular focus on the incorporation of an ion conducting polymer film which functions as the electrolyte as well as a separator between electrodes. Notably, the polymer film is a ternary composite of polymer matrix, an ionic plasticiser, and a lithium salt. The effectiveness of the polymer to perform these functions was determined from electrochemical data.