Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cardinaels, Ruth M.

  • Google
  • 19
  • 52
  • 285

KU Leuven

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2024Numerical simulation of fiber orientation kinetics and rheology of fiber-filled polymers in uniaxial extension3citations
  • 2024In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites4citations
  • 2024A monolithic numerical model to predict the EMI shielding performance of lossy dielectric polymer nanocomposite shields in a rectangular waveguide2citations
  • 2023A generalized mechano-statistical transient network model for unravelling the network topology and elasticity of hydrophobically associating multiblock copolymers in aqueous solutions2citations
  • 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuators33citations
  • 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuators33citations
  • 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanes24citations
  • 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterization31citations
  • 2021Bio‐Based Poly(3‑hydroxybutyrate)/Thermoplastic Starch Composites as a Host Matrix for Biochar Fillers21citations
  • 2020A filament stretching rheometer for in situ X-ray experiments8citations
  • 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materials22citations
  • 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materials22citations
  • 2020Polymer spherescitations
  • 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particles18citations
  • 2019Laser sintering of polymer particle pairs studied by in-situ visualization35citations
  • 2018Thin film mechanical characterization of UV-curing acrylate systems26citations
  • 2018Designing multi-layer polymeric nanocomposites for EM shielding in the X-band1citations
  • 2017Future nanocomposites : exploring multifunctional multi-layered architecturescitations
  • 2017Experimental setup for in situ visualization studies of laser sintering of polymer particlescitations

Places of action

Chart of shared publication
Jaensson, Nick O.
2 / 9 shared
Anderson, Pd Patrick
11 / 50 shared
Egelmeers, Thijs R. N.
2 / 2 shared
Van Loock, Frederik
1 / 15 shared
Huysecom, An-Sofie
1 / 1 shared
Thielemans, Wim
1 / 14 shared
Moldenaers, Paula
1 / 28 shared
Bus, Tom
1 / 3 shared
Lugger, Sean J. D.
2 / 8 shared
Engels, Tom A. P.
5 / 33 shared
Schenning, Aphj Albert
1 / 37 shared
Mulder, Dirk Jan
2 / 6 shared
Schenning, Albert P. H. J.
1 / 13 shared
Bus, A. B. P.
1 / 1 shared
Tol, Joost J. B. Van Der
1 / 2 shared
Eisenreich, Fabian
1 / 5 shared
Vantomme, Ghislaine
1 / 9 shared
Meijer, Ew Bert
1 / 48 shared
Hermida-Merino, Daniel
1 / 24 shared
Hejmady, Prakhyat
3 / 3 shared
Van Breemen, Lambèrt C. A.
6 / 34 shared
Samyn, Pieter
1 / 28 shared
Haeldermans, Tom
1 / 2 shared
Vandamme, Dries
1 / 4 shared
Cuypers, Ann
1 / 2 shared
Vanreppelen, Kenny
1 / 2 shared
Schreurs, Sonja
1 / 11 shared
Suijkerbuijk, Eduard J. M. C.
1 / 2 shared
Peters, Gwm Gerrit
2 / 39 shared
Pepe, Jessica
1 / 2 shared
Dekkers, Erwin C. A.
1 / 2 shared
Merino, D. Hermida
1 / 1 shared
Cleven, Lucien C.
1 / 2 shared
Wu, Dan Jing
2 / 3 shared
Marchioli, Giulia
2 / 2 shared
Szymczyk, Wojciech
2 / 2 shared
Dankers, Patricia Y. W.
2 / 12 shared
Bouten, Cvc Carlijn
1 / 13 shared
Besseling, Paul J.
2 / 3 shared
Dongen, Kim Van
1 / 1 shared
Genderen, Marcel H. P. Van
1 / 1 shared
Smits, Anthal
1 / 4 shared
Smits, Anthal I. P. M.
1 / 2 shared
Van Dongen, Kim
1 / 1 shared
Van Genderen, Marcel H. P.
1 / 1 shared
Bouten, Carlijn V. C.
1 / 3 shared
Cleven, Lucien
1 / 2 shared
Hejmady, P.
2 / 2 shared
Maassen, Eveline
1 / 3 shared
Anastasio, R.
1 / 4 shared
Roch, Anne
2 / 4 shared
Saha, D.
2 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Jaensson, Nick O.
  • Anderson, Pd Patrick
  • Egelmeers, Thijs R. N.
  • Van Loock, Frederik
  • Huysecom, An-Sofie
  • Thielemans, Wim
  • Moldenaers, Paula
  • Bus, Tom
  • Lugger, Sean J. D.
  • Engels, Tom A. P.
  • Schenning, Aphj Albert
  • Mulder, Dirk Jan
  • Schenning, Albert P. H. J.
  • Bus, A. B. P.
  • Tol, Joost J. B. Van Der
  • Eisenreich, Fabian
  • Vantomme, Ghislaine
  • Meijer, Ew Bert
  • Hermida-Merino, Daniel
  • Hejmady, Prakhyat
  • Van Breemen, Lambèrt C. A.
  • Samyn, Pieter
  • Haeldermans, Tom
  • Vandamme, Dries
  • Cuypers, Ann
  • Vanreppelen, Kenny
  • Schreurs, Sonja
  • Suijkerbuijk, Eduard J. M. C.
  • Peters, Gwm Gerrit
  • Pepe, Jessica
  • Dekkers, Erwin C. A.
  • Merino, D. Hermida
  • Cleven, Lucien C.
  • Wu, Dan Jing
  • Marchioli, Giulia
  • Szymczyk, Wojciech
  • Dankers, Patricia Y. W.
  • Bouten, Cvc Carlijn
  • Besseling, Paul J.
  • Dongen, Kim Van
  • Genderen, Marcel H. P. Van
  • Smits, Anthal
  • Smits, Anthal I. P. M.
  • Van Dongen, Kim
  • Van Genderen, Marcel H. P.
  • Bouten, Carlijn V. C.
  • Cleven, Lucien
  • Hejmady, P.
  • Maassen, Eveline
  • Anastasio, R.
  • Roch, Anne
  • Saha, D.
OrganizationsLocationPeople

conferencepaper

Experimental setup for in situ visualization studies of laser sintering of polymer particles

  • Cardinaels, Ruth M.
  • Anderson, Pd Patrick
  • Van Breemen, Lambèrt C. A.
  • Hejmady, P.
Abstract

Products manufactured by Selective Laser Sintering suffer from low mechanical stability and reproducibility [1]. This is mainly caused by an incomplete sintering of the polymer particles, resulting in significant remaining porosity after sintering, as well as limited interlayer adhesion. Hence, more insight in the effects of the different processing conditions and material characteristics on the final product morphology is required. Therefore it is important to understand the sintering of the particles during the process and to utilize this knowledge in material processing. The sintering of two polymer particles has been studied in literature by hot stage microscopy [2], but this technique does not simulate the conditions in an SLS machine. Therefore a dedicated experimental setup, which incorporates the main features of a 3D SLS printing device and at the same time allows in-situ visualization of the sintering dynamics by means of optical microscopy and/or X-rays is developed. A visible light laser is used to achieve good spatial resolution and control over the supplied energy. Energy absorption of the polymers containing colored dye was quantified by means of UV-VIS spectroscopy. Initial thermal characterization by DSC and TGA enabled us to define the stable sintering region for the particles. Subsequently, experiments were conducted using pairs of polymer particles inside a temperature controlled chamber. The polymer particles were subjected to a known amount of laser energy with the ultimate objective to study the sintering dynamics, which is a crucial stage in SLS. The dynamics of the growth of the neck between both particles is compared to available models for sintering kinetics of molten polymers. References: [1] Zarringhalam, Hadi, et al. Materials Science and Engineering: A 435 (2006): 172-180. [2] Berretta et al. Journal of Material Science: 51.10 (2016): 4778 - 4794. S19-239

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • experiment
  • thermogravimetry
  • differential scanning calorimetry
  • porosity
  • optical microscopy
  • Ultraviolet–visible spectroscopy
  • sintering
  • laser sintering
  • static light scattering