Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sharma, Sagar

  • Google
  • 3
  • 3
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021In situ scanning tunneling microscopy study of 2-mercaptobenzimidazole local inhibition effects on copper corrosion at grain boundary surface terminations9citations
  • 2021Local Effects of Organic Inhibitor Molecules on Passivation of Grain Boundaries Studied In Situ on Copper12citations
  • 2020Local Inhibition by 2-mercaptobenzothiazole of Early Stage Intergranular Corrosion of Coppercitations

Places of action

Chart of shared publication
Marcus, Philippe
3 / 82 shared
Maurice, Vincent
3 / 56 shared
Klein, Lorena
3 / 9 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Marcus, Philippe
  • Maurice, Vincent
  • Klein, Lorena
OrganizationsLocationPeople

article

Local Inhibition by 2-mercaptobenzothiazole of Early Stage Intergranular Corrosion of Copper

  • Marcus, Philippe
  • Maurice, Vincent
  • Sharma, Sagar
  • Klein, Lorena
Abstract

Corrosion inhibition by 2-mercaptobenzothiazole (MBT) at the surface termination of various types of grain boundaries (GBs) was studied at the nanometer scale on microcrystalline copper in HCl acid solution using in situ electrochemical scanning tunneling microscopy (ECSTM). Macroscopic electrochemical analysis by cyclic voltammetry showed highly effective inhibition of Cu(I) active dissolution blocked by MBT pre-adsorption in a potential range of 0.15-0.2 V. ECSTM analysis of the initial stages of intergranular corrosion confirmed the mitigation of net intergranular dissolution by the pre-adsorbed MBT surface layer but also revealed the local accumulation of reaction products in the GB regions. For Coincidence Site Lattice boundaries other than coherent twins, intergranular dissolution, mitigated by the pre-adsorbed MBT layer, and protection by intergranular formation of a film of reaction products were observed. For random GBs, protection by reaction products was dominant, in agreement with their more reactive intrinsic character, generating more Cu(I) ions under anodic polarization and thus promoting the formation of a protective film of reaction products. Coherent twins did not show preferential intergranular reactivity compared to adjacent grains, indicating equally strong efficiency than on grains. These results bring new insight on how inhibition operates locally at various types of GBs.

Topics
  • surface
  • grain
  • reactive
  • copper
  • random
  • cyclic voltammetry
  • scanning tunneling microscopy
  • intergranular corrosion