Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schueren, Lien Van Der

  • Google
  • 2
  • 3
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Failure mechanisms in unidirectional self-reinforced biobased composites based on high stiffness PLA fibres33citations
  • 2018In situ identification of the failure mechanisms in self-reinforced poly(lactic acid) compositescitations

Places of action

Chart of shared publication
Beauson, Justine
1 / 13 shared
Goutianos, Stergios
2 / 29 shared
Sørensen, Bent F.
1 / 51 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Beauson, Justine
  • Goutianos, Stergios
  • Sørensen, Bent F.
OrganizationsLocationPeople

document

In situ identification of the failure mechanisms in self-reinforced poly(lactic acid) composites

  • Schueren, Lien Van Der
  • Goutianos, Stergios
  • Sørensen, Bent F.
Abstract

The growing public concern and new environmental legislations are driving forces for new materials with less environmental impact during the entire life cycle. As a result, biobased and biodegradable polymers have been extensively studied with Poly(lactic acid) (PLA) being one of the most promising biopolymer due to its attractive mechanical properties, the low amount of energy needed for production and its biodegradability [1]. Due to its brittleness, however, PLA is reinforced with fibres (e.g. natural fibres) to improve its mechanical and thermal properties [2]. Despite the use of natural fibres, there are issues with recycling of these composites. An alternative approach is the concept of “self-reinforced polymer” composites where the polymer matrix is reinforced with oriented fibres of the same polymer [3]. These materials are fully recyclable since there is no need to separate the fibres from the matrix.<br/>In the present work, we produce highly oriented fibres from PLA pellets by extrusion followed by solid state drawing. The PLA matrix is also in the form of fibres but has a lower melting point. Commingling the two types of fibres, results in hybrid yarns that can be wound to produce unidirectional sheets (after consolidation) or woven into fabrics, which can be subsequently consolidated to sheets. The consolidation temperature is lower than the melting point of the highly oriented fibres, which will remain intact, but higher than the melting point of the low melting fibres. In this way, a self-reinforced PLA composite can be produced.<br/>The stiffness of the self-reinforced PLA composites is significantly higher than the pure PLA material and competes with self-reinforced composites based on fossil hydrocarbon sourced polymers such as all-polypropylene composites. However, the strength of the self-reinforced PLA composites is still relatively low and needs to be improved.<br/>For this reason, the tensile response of the self-reinforced PLA composites is characterised in situ in order to identify the failure mechanisms and more importantly the sequence of damage development (including load levels). The tests are performed inside the chamber of an environmental scanning electron microscope under vapour pressure mode to minimise charging of cracks upon loading. Based on the experimental results, suggestions are drawn for optimising the mechanical properties (strength) of the self-reinforced PLA composites i.e. combination of fibre, matrix and interface properties.

Topics
  • impedance spectroscopy
  • polymer
  • extrusion
  • laser emission spectroscopy
  • crack
  • strength
  • composite
  • drawing
  • woven
  • tensile response