People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baillargeat, Dominique
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensorcitations
- 2022Chemical sensor based on a novel capacitive microwave flexible transducer with polymer nanocomposite-carbon nanotube sensitive filmcitations
- 2019CNT-Based Inkjet-Printed RF Gas Sensor: Modification of Substrate Properties during the Fabrication Processcitations
- 2018VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT:PSS-MWCNTs nanocomposite film for environmental applicationscitations
- 2018Chemical sensor based on a novel capacitive microwave flexible transducer with polymer nanocomposite-carbon nanotube sensitive filmcitations
- 2017VOCs monitoring using microwave capacitive resonator and conductive polymer – MWCNTs nanocomposites for environmental applications
- 2017Chemical gas sensor based on a novel capacitive microwave flexible transducer and composite polymer carbon nanomaterials ; Chemical gas sensor based on a novel capacitive microwave flexible transducer and composite carbon nanomaterialscitations
- 2017Chemical sensor based on a novel capacitive microwave flexible transducer with polymer nanocomposite-carbon nanotube sensitive filmcitations
- 2017Invited talk: CArbon and Microwave-based Ultrasensitive gas Sensors (CAMUS)
- 2017Chemical gas sensor based on a novel capacitive microwave flexible transducer and composite polymer carbon nanomaterials
- 2017Chemical Gas Sensor Based on a Flexible Capacitive Microwave Transducer Associated with a Sensitive Carbon Composite Polymer Filmcitations
- 2014Nanosecond-laser-induced graphitization and amorphization of thin nano-crystalline graphite films
- 2013Photocurrent Study of Locally Grown and Solution-deposited Carbon Nanotubes
- 2013Flip Chip Based on Carbon Nanotube-Carbon Nanotube Interconnected Bumps for High-Frequency Applicationscitations
- 2013Flip Chip Based on Carbon Nanotube-Carbon Nanotube Interconnected Bumps for High-Frequency Applicationscitations
- 2012Carbon nanotube bumps for the flip chip packaging systemcitations
- 2011A new optically controlled CDS-polymer capacitor for tunable microwave components
- 2011Advanced design and fabrication of microwave components based on shape optimization and 3D ceramic stereolithography process
- 2010Impact of the CNT growth process on gold metallization dedicated to RF interconnect applications
- 2009When new needs for satellite payloads meet with new filters architecture and technologies
- 2008Fabrication of Millimeter Wave Components Via Ceramic Stereo- and Microstereolithography Processescitations
- 2007Mixed LTCC ultra compact S-band filters with wide multispurious stopbandcitations
Places of action
Organizations | Location | People |
---|
document
Invited talk: CArbon and Microwave-based Ultrasensitive gas Sensors (CAMUS)
Abstract
In the areas of safety, health and environment, the detection of chemical compounds, VOCs and toxic gases, is a major societal concern. The explosion in recent years in the telecommunications market has led to the emergence of concept of sensor network. This new concept of communicating objects meets the growing need to deploy sensors for monitoring and analysing distributed applications. These systems rely on an architecture built around wireless autonomous sensors composed of nanostructured materials that are very effective in terms of sorption of chemical compounds, and of new low cost communication electronic devices printed on flexible substrates. Thus, the research effort requires a multidisciplinary approach around the engineering of new materials, transduction mechanisms and electromagnetic waves (microwaves). The CAMUS (CArbon & Microwaves-based Ultrasensitive Gas Sensors) project is proposed by a consortium of four labs with complementary skills: IMS Bordeaux UMR 5218, XLIM Limoges UMR 7252, IEMN Lille UMR 8510, CINTRA Singapore UMI 3288 CNRS-NTU-Thales. In this project, we propose the realization of a platform for microwave transduction associated with nanostructured materials, graphene and carbon nanotubes (CNTs), allowing the extraction of interference properties of conductivity and dielectric permittivity caused by the interaction of these materials with the target species. Thus, our approach aims to demonstrate the feasibility of a passive microwave resonator on a flexible substrate dedicated to the detection of chemical compounds in the vapor state.