People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zakri, Cécile
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023High‐Energy‐Density Waterborne Dielectrics from Polyelectrolyte‐Colloid Complexescitations
- 2019Shape memory nanocomposite fibers for untethered high-energy microengines.citations
- 2018Preparation and electrical conductivity of different fibres prepared from vertically aligned carbon nanotubes
- 2018Giant Electrostriction of Soft Nanocomposites Based on Liquid Crystalline Graphenecitations
- 2017Large scale conductive films and patterns based on carbon nanotubes and graphene liquid crystals
- 2017Giant Electrostrictive Response and Piezoresistivity of Emulsion Templated Nanocompositescitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsioncitations
- 2013Changes of morphology and properties of block copolymers induced by carbon nanotubescitations
- 2012Conductivity and percolation of nanotube based polymer composites in extensional deformationscitations
- 2011Scalable Process for the Spinning of PDV-CArbon Nanotube composite Fiberscitations
- 2009Influence of the Spinning Conditions on the Structure and Properties of Polyamide 12/Carbon Nanotube Composite Fiberscitations
- 2009Influence of the Spinning Conditions on the Structure and Properties of Polyamide 12/Carbon Nanotube Composite Fiberscitations
- 2009Kinetics of Nanotube and Microfiber Scission under Sonicationcitations
- 2009Kinetics of nanotube and microfiber scission under sonicationcitations
- 2008High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillerscitations
- 2007Shape and Temperature Memory of Nanocomposites with Broadened Glass Transitioncitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Large scale conductive films and patterns based on carbon nanotubes and graphene liquid crystals
Abstract
Most of the potential applications in carbon nanotubes and graphene-based composites require suitable methods for making aligned assemblies on a large scale. Liquid crystal ordering is an opportunity to develop such materials and applications [1]. In this talk, we will present a review of our recent results in the preparation and characterization of lyotropic liquid crystals based on concentrated aqueous suspensions, stabilized by surfactants, of single-walled carbon nanotubes (SWNT) or reduced graphene oxide (RGO). In the first part we will focus on anisotropic conductive films, which are prepared by shearing and drying the LC. In particular, we will show how the electrical conductivity anisotropy increases with the orientational order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes [1-2]. In the second part we present recent results on the morphology and anisotropy of thin conductive lines of SWCNT, inkjet-printed. Its Their morphology can be tuned from rail track to quasi-continuouslines by increasing nanotube concentration and drop density. The average order parameter is in the range 0.2–0.4 for all samples. The electrical resistivity is larger for rail tracks with respect to continuous layers, due to large amounts of electrical dead-ends in and between the inner edges of rail tracks [4]. Finally we will present how to prepare water-based Graphene Oxide (GO), and Reduced Graphene Oxide (RGO) liquid crystals stabilized by surfactant molecules. We will discuss their structural and thermodynamic characterizations, which provide indirect but statistical information on the organizations and dimensions of the graphene flakes [1-3]. <BR> 1. C. Zakri et al, Phil. Trans. R. Soc. A. 371 (2013) 201204995(15) <BR> 2. Zamora-Ledezma, C. et al. J. Phys. Chem. Lett., 3 (17), pp 2425–2430 (2012)<BR> 3. Yuan J. et al. Nat. Commun. 6:8700 doi: 10.1038/ncomms9700 (2015).<BR> 4. F. Torres-Canas et al, Mater. Res. Express. DOI: 10.1088/2053-1591/aa5687 (2017) <BR>