People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chagnon, Grégory
Université Grenoble Alpes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2020Anisotropy and Clausius-Clapeyron relation for forward and reverse stress-induced martensitic transformations in polycrystalline NiTi thin walled tubescitations
- 2020A comprehensive thermo-viscoelastic experimental investigation of Ecoflex polymercitations
- 2019Strain Gauges Based 3D Shape Monitoring of Beam Structures Using Finite Width Gauge Modelcitations
- 2019Characterizing Transformation Phenomena and Elastic Moduli of Austenite and Oriented Martensite of Superelastic Thin NiTi Wire through Isothermal Dynamic Mechanical Analysiscitations
- 2018Anisotropy and temperature dependence of superelastic behavior of NiTi shape memory alloy thin walled tubes
- 2018Mechanical and radiological behavior of a bioresorbable polymer during in vivo degradation. An in vivo rat study to develop an Internal biliary stent to reduce biliary complications after liver transplantation
- 2018Geometry-based model for U-shaped strain gauges on medical needles
- 2017Anisotropic tensile behavior of NiTi Tubes and its dependence on temperature experimental results
- 2016Modelling of mechanical properties of a PLA-b-PEG-b-PLA biodegradable triblock copolymer during hydrolytic degradation
- 2016Anisotropic thermomechanical properties of a superelastic Nickel-Titane thin tube
- 2015Radiopaque poly(ε-caprolactone) as additive for X-ray imaging of temporary implantable medical devicescitations
- 2015Study of electropulse heat treatment of cold worked NiTi wire: From uniform to localised tensile behaviourcitations
- 2015Mechanically-architectured silicone elastomer membranes for biomedical applications
- 2014A conical mandrel tube drawing test designed to assess failure criteriacitations
- 2014Mechanical characterization and comparison of different NiTi/silicone rubber interfacescitations
- 2013Design of specific experimental tests to evaluate formability prediction of cold drawing CoCr Tubes
- 2012Mechanical behaviour of architectured NiTi materials in complex loading
- 2012Mechanical behaviour of architectured NiTi materials in complex loading
- 2012Experiments and modeling of smart silicone elastomer membranes reinforced with shaped NiTi textiles
- 2011Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes-Influence of the Tool Parameters on the Forming Limitcitations
- 2009Thermomechanical modelling of cold drawing processes of small diameter tubes
- 2007Tube Drawing Process Modelling By A Finite Element Analysis
- 2007Tube Drawing Process Modelling By A Finite Element Analysis
- 2007Modélisation de l'étirage à froid de tubes par analyse éléments-finis
- 2004Theoretical and numerical limitations for the simulation of crack propagation in natural rubber components
- 2003Theoretical and numerical limitations for the simulation of crack propagation in natural rubber components
- 2003Crack initiation in filled natural rubber: experimental database and macroscopic observations
- 2002Influence of the loading conditions on fatigue properties for filled elastomers
Places of action
Organizations | Location | People |
---|
document
Tube Drawing Process Modelling By A Finite Element Analysis
Abstract
Drawing process is used in manufacturing thin-walled tubes, while reducing progressively their wall thickness and their inner and outer diameters. In this paper a stainless steel 316LVM is studied with one drawing process: hollow sinking. This study gets into different issues including elastoplastic behaviour, thermomechanical coupling, contacts, friction and numerical convergence. Experimental drawings are realized on a testing bench where forces, dimensional data and temperature are recorded. In a first approach, tensile tests lead us to use an elastoplastic constitutive equation with an isotropic hardening law. In simulations, an axisymetric steady-state thermomechanical model is used. Numerical results are compared with experimental results. Finally, in spite of some defaults, this study shows that finite element modelling is able to foresee accurately the thermomechanical behaviour of a tube during a drawing process. A better understanding and modelling of the thermomechanical behaviour of materials will improve the FEM simulation results.