People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chagnon, Grégory
Université Grenoble Alpes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2020Anisotropy and Clausius-Clapeyron relation for forward and reverse stress-induced martensitic transformations in polycrystalline NiTi thin walled tubescitations
- 2020A comprehensive thermo-viscoelastic experimental investigation of Ecoflex polymercitations
- 2019Strain Gauges Based 3D Shape Monitoring of Beam Structures Using Finite Width Gauge Modelcitations
- 2019Characterizing Transformation Phenomena and Elastic Moduli of Austenite and Oriented Martensite of Superelastic Thin NiTi Wire through Isothermal Dynamic Mechanical Analysiscitations
- 2018Anisotropy and temperature dependence of superelastic behavior of NiTi shape memory alloy thin walled tubes
- 2018Mechanical and radiological behavior of a bioresorbable polymer during in vivo degradation. An in vivo rat study to develop an Internal biliary stent to reduce biliary complications after liver transplantation
- 2018Geometry-based model for U-shaped strain gauges on medical needles
- 2017Anisotropic tensile behavior of NiTi Tubes and its dependence on temperature experimental results
- 2016Modelling of mechanical properties of a PLA-b-PEG-b-PLA biodegradable triblock copolymer during hydrolytic degradation
- 2016Anisotropic thermomechanical properties of a superelastic Nickel-Titane thin tube
- 2015Radiopaque poly(ε-caprolactone) as additive for X-ray imaging of temporary implantable medical devicescitations
- 2015Study of electropulse heat treatment of cold worked NiTi wire: From uniform to localised tensile behaviourcitations
- 2015Mechanically-architectured silicone elastomer membranes for biomedical applications
- 2014A conical mandrel tube drawing test designed to assess failure criteriacitations
- 2014Mechanical characterization and comparison of different NiTi/silicone rubber interfacescitations
- 2013Design of specific experimental tests to evaluate formability prediction of cold drawing CoCr Tubes
- 2012Mechanical behaviour of architectured NiTi materials in complex loading
- 2012Mechanical behaviour of architectured NiTi materials in complex loading
- 2012Experiments and modeling of smart silicone elastomer membranes reinforced with shaped NiTi textiles
- 2011Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes-Influence of the Tool Parameters on the Forming Limitcitations
- 2009Thermomechanical modelling of cold drawing processes of small diameter tubes
- 2007Tube Drawing Process Modelling By A Finite Element Analysis
- 2007Tube Drawing Process Modelling By A Finite Element Analysis
- 2007Modélisation de l'étirage à froid de tubes par analyse éléments-finis
- 2004Theoretical and numerical limitations for the simulation of crack propagation in natural rubber components
- 2003Theoretical and numerical limitations for the simulation of crack propagation in natural rubber components
- 2003Crack initiation in filled natural rubber: experimental database and macroscopic observations
- 2002Influence of the loading conditions on fatigue properties for filled elastomers
Places of action
Organizations | Location | People |
---|
article
A conical mandrel tube drawing test designed to assess failure criteria
Abstract
International audience ; Cold tube drawing is a metal forming process which enables to produce tubes with high dimensional precision. It consists in reducing tube dimensions by pulling it through a die. Tube outer diameter is calibrated by a die and the tube inner diameter and thickness are calibrated by a mandrel. One of the major concern of metal forming industry is the constant improvement of productivity and product quality. In the aim of pushing the process to the limit the question is how far the material can be processed without occurrence of failure. In the present study, a long conical mandrel with a small cone angle was designed in order to carry out drawing tests up to fracture with experimental conditions very close to the industrial process. The FEM of the process was built in order to access the local stress and strain data. A specific emphasis was put on the friction characterisation. For that purpose force measurement during the conical mandrel experiments enabled to characterise a pressure dependent friction coefficient constitutive law by means of an inverse analysis. Finally, eleven failure criteria were selected to study the drawability of cobalt-chromium alloy tubes. The assessment of failure criteria based on damage variables or damage accumulation variables involved their calibration on uniaxial tensile tests. The experimental studies were completed by SEM fractography which enabled to understand the fracture locus and the propagation direction of the fracture.