Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kiuru, Risto

  • Google
  • 3
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Attenuation of ground penetrating radar signal in Kuru granitecitations
  • 2018Searching for Indicators of Excavation Damage Using R Statistics Environmentcitations
  • 2018Effects of Excavation Damage on the Electrical Properties of Rock Masscitations

Places of action

Chart of shared publication
Kantia, P.
1 / 1 shared
Kantia, Pekka
2 / 2 shared
Rinne, Mikael
2 / 3 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Kantia, P.
  • Kantia, Pekka
  • Rinne, Mikael
OrganizationsLocationPeople

document

Attenuation of ground penetrating radar signal in Kuru granite

  • Kiuru, Risto
  • Kantia, P.
Abstract

<p>Ground penetrating radar (GPR) is a non-destructive electromagnetic method widely used in civil engineering surveys and investigations. GPR applications can be used to analyse rock mass integrity and to detect geological and geometric features such as lithological unit interfaces, fractures, shear zones and voids. Typically, GPR studies have relied on laboratory values of relative dielectric permittivity for calibration. These are effective (homogeneous) medium values for a system that differs from the instrument that is actually used in the field, measured from small samples. In order to investigate GPR signal propagation in the rock mass, a slab of 100 x 90 x 30 cm (width x height x depth) was sawcut from a larger intact rock block of largely homogenous grey granite from Kuru, Tampere, Finland. Point like GPR measurement with central frequency of 1600 MHz were carried out in a grid on both 100 x 90 cm slab surfaces. Altogether 63 points per side were measured with approximately 250 scans per point. Average relative dielectric permittivity of the rock slab was 4.82, which was also the median value. Relative dielectric permittivity varied from 4.74 to 4.90, giving a range of 0.16 (3.3 % of the mean value). Average attenuation of the signal in the rock slab was -16.39 dB/m, with a range from -16.08 dB/m to -16.67 dB/m, or 0.59 dB/m (3.6 %). This study provides information on true attenuation and dielectric properties, as measured with a device to be used in the field, in an actual, relatively homogeneous rock mass. They can be used to obtain more accurate information on the location and size of e.g. fractures, fracture zones, inclusions or altered zones within the rock mass. Furthermore, the process described here can be applied elsewhere to obtain similar, localised and device specific attenuation and relative dielectric permittivity values.</p>

Topics
  • impedance spectroscopy
  • surface
  • inclusion
  • void