People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deschaux-Beaume, Frédéric
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Investigation of stress field with neutron diffraction of welds based on a temper bead technique. ; Mesure du champ de contraintes par diffraction de neutrons de soudures réalisées par la méthode temper bead.
- 2022Structure and texture simulations in fusion welding processes – comparison with experimental datacitations
- 2021Numerical prediction of grain structure formation during laser powder bed fusion of 316 L stainless steelcitations
- 2021Numerical prediction of grain structure formation during laser powder bed fusion of 316 L stainless steelcitations
- 2021Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint
- 2020Microstructure and properties of steel-aluminum Cold Metal Transfer jointscitations
- 2019Study of the effect of growth kinetic and nucleation law on grain structure simulation during gas tungsten arc welding of Cu-Ni platecitations
- 2019Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a Cold Metal Transfer process
- 2019Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a Cold Metal Transfer processcitations
- 2018Indirect approaches for estimating the efficiency of the cold metal transfer welding processcitations
- 2017Effect of welding parameters on the quality of multilayer deposition of aluminum alloy
- 2017Effect of welding parameters on the quality of multilayer deposition of aluminum alloy
- 2017Characteristics of Steel deposits elaborated with Cold Metal Transfer process
- 2017Characteristics of Steel deposits elaborated with Cold Metal Transfer process
- 2017Wire and Arc Additive Manufacturing of aluminum alloy Al5Si parts
- 2017Wire and Arc Additive Manufacturing of aluminum alloy Al5Si parts
- 2017Effect of process parameters on the quality of aluminium alloy Al5Si deposits in wire and arc additive manufacturing using a cold metal transfer processcitations
- 2017Effect of process parameters on the quality of aluminium alloy Al5Si deposits in wire and arc additive manufacturing using a cold metal transfer processcitations
- 2016A solidification model for the columnar to equiaxed transition in welding of a Cr-Mo ferritic stainless steel with Ti as inoculantcitations
- 2016In situ observations and measurements during solidification of CuNi weld poolscitations
- 2016Microstructure and residual stresses in Ti-6Al-4V alloy pulsed and unpulsed TIG weldscitations
- 2015Quantitative assessment of the interfacial roughness in multi-layered materials using image analysis: Application to oxidation in ceramic-based materialscitations
- 2015Quantitative assessment of the interfacial roughness in multi-layered materials using image analysis: Application to oxidation in ceramic-based materialscitations
- 2015Control of mass and heat transfer for steel/aluminium joining using Cold Metal Transfer processcitations
- 2013Analysis of weld-cracking and improvement of the weld-repair process of superplastic forming toolscitations
- 2013Characterization of Gas Metal Arc Welding welds obtained with new high Cr-Mo ferritic stainless steel filler wirescitations
- 2013Influence of filler wire composition on weld microstructures of a 444 ferritic stainless steel gradecitations
- 2011Hot tearing test for TIG welding of aluminum alloys: application of a stress parallel to the fusion line
- 2011Weldability of new ferritic stainless steel for exhaust manifold application
- 2010Hot tearing test for TIG welding of aluminium alloys: application of a tensile load parallel to the fusion line
- 2010Development and modeling of hot tearing test in TIG welding of aluminum alloy 6056
- 2010Hot-crack test for aluminium alloys welds using TIG process
- 2008Galvanised steel to aluminium joining by laser and GTAW processes,citations
- 2008Steel to aluminium braze-welding by laser process with and Al-12Si filler wirecitations
- 2007Oxidation modelling of a Si3N4–TiN ceramic: microstructure and kinetic lawscitations
- 2007Steel to aluminium joining by laser and TIG reactive wettingcitations
- 2007Generation of aluminum-steel joints with laser-induced reactive wettingcitations
- 2006Which laser process for steel to aluminium joining ?
- 2005Steel to aluminium brazing by laser and TIP processes
- 2005Influence of the mechanical properties of filler materials on weld repair quality of SPF tools
- 2004Experimental and numerical investigation of the weld repair of superplastic forming diescitations
Places of action
Organizations | Location | People |
---|
document
Effect of welding parameters on the quality of multilayer deposition of aluminum alloy
Abstract
Nowadays amongst additive manufacturing (AM) technologies, the Wire and Arc Additive Manufacturing (WAAM), process that uses metallic wire as filler and an arc welding process as a fusion source, is promising especially because of its high deposition rate, low cost raw materials, low material loss, and capability to manufacture large parts with an automatized system. On the other hand, the aluminum is a frequently used material in the industry, principally because its low density and mechanical properties, what make it interesting to be employed by AM processes. The present study focuses on the implementation of a Cold Metal Transfer (CMT) welding generator using an aluminum alloy wire (Al5Si) for AM applications. CMT process is a promising one for WAAM, thanks to its controlled current waveform and filler wire feeding that allow regular deposited weld beads. The aim of this work is to identify the relationships between the CMT welding parameters and the physical characteristics of deposited metal, in order to find the most suited parameters allowing a regular deposit. The CMT work parameters were evaluated in order to observe its effects on the morphological aspect of the deposited weld beads. Construction of multilayer metallic walls is achieved, and the presence of geometrical defects that could affect the correct wall formation was identified when the deposit is not continuous, with many ignition and stop cycles. Some propositions to decrease the presence of these defects are tested. Attempts of multi layers addition are presented, and relationship between these last results and CMT parameters is discussed.