Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Milanovic, Igor

  • Google
  • 2
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Timecitations
  • 2021Mechanochemical Synthesis and Thermal Dehydrogenation of Novel Calcium-Containing Bimetallic Amidoboranescitations

Places of action

Chart of shared publication
Novaković, Jasmina Grbović
1 / 1 shared
Babić, Bojana
1 / 3 shared
Novaković, Nikola
1 / 7 shared
Rajnović, Dragan
1 / 6 shared
Filipovic, Nenad
1 / 5 shared
Asanović, Vanja
1 / 3 shared
Prvulovic, Milica
1 / 1 shared
Sekulić, Zorana
1 / 3 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Novaković, Jasmina Grbović
  • Babić, Bojana
  • Novaković, Nikola
  • Rajnović, Dragan
  • Filipovic, Nenad
  • Asanović, Vanja
  • Prvulovic, Milica
  • Sekulić, Zorana
OrganizationsLocationPeople

article

Mechanochemical Synthesis and Thermal Dehydrogenation of Novel Calcium-Containing Bimetallic Amidoboranes

  • Milanovic, Igor
Abstract

Metallic amidoboranes are widely investigated candidates for solid-state hydrogen storage, and much focus shifted recently toward bimetallic amidoboranes. Bimetallic amidoboranes are expected to introduce novel and enhanced physicochemical properties regarding storage and stability. However, these materials are still scarce and mostly grouped around magnesium- or aluminum-containing compounds. We present here a rapid and green mechanochemical solvent-free synthesis of two novel calcium-containing bimetallic amidoboranes, Li2Ca(NH2BH3)4 and Na2Ca(NH2BH3)4, from metal hydrides and ammonia borane. The insight into mechanochemical syntheses is provided by the in situ tandem synchrotron X-ray diffraction and thermal monitoring. The in situ data reveal how the choice of alkali metal hydride governs the course of reactions and their thermal profiles. In situ monitoring of thermal dehydrogenation of these materials is conducted by mass spectrometry and infrared spectroscopy, showing how the course of thermal decomposition varies depending on the structure of the amidoborane, resulting however in the same final products. These new hydrogen-rich bimetallic amidoboranes are structurally characterized by high-resolution powder X-ray diffraction, and they both show potential for hydrogen storage applications: high theoretical gravimetric capacities and low desorption temperatures of hydrogen without the significant presence of harmful gases. We also show how the choice of the milling reactor material can be decisive for the efficiency and overall success of the mechanochemical synthetic procedure, which may impact the design of milling syntheses for other thermally labile chemical systems.

Topics
  • impedance spectroscopy
  • compound
  • Magnesium
  • Magnesium
  • grinding
  • aluminium
  • milling
  • mass spectrometry
  • powder X-ray diffraction
  • Hydrogen
  • Calcium
  • thermal decomposition
  • spectrometry
  • infrared spectroscopy
  • Alkali metal