People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hollenkamp, Anthony
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Sustainable cyanide-C60 fullerene cathode to suppress the lithium polysulfides in a lithium-sulfur batterycitations
- 2022Coating Methods
- 2021Long-Life Power Optimised Lithium-ion Energy Storage Device
- 2021Comparing Physico-, Electrochemical and Structural Properties of Boronium vs Pyrrolidinium Cation Based Ionic Liquids and Their Performance as Li-ion Battery Electrolytescitations
- 2021Conjugated Microporous Polycarbazole-Sulfur Cathode Used in a Lithium-Sulfur Battery
- 2020In situ synchrotron XRD and sXAS studies on Li-S batteries with ionic-liquid and organic electrolytescitations
- 2019Electrochemically controlled deposition of ultrathin polymer electrolyte on complex microbattery electrode architecturescitations
- 2019Organic salts utilising the hexamethylguanidinium cation: the influence of the anion on the structural, physical and thermal propertiescitations
- 2018From Lithium Metal to High Energy Batteries
- 2018Integrating polymer electrolytes: A step closer to 3D-Microbatteries for MEMS
- 2017Electrochemistry of Lithium in Ionic Liquids - Working With and Without a Solid Electrolyte Interphase
- 2017A step closer to 3D-Microbatteries for sensors: integrating polymer electrolytes
- 2016Optimising the concentration of LiNO3 additive in C4mpyr-TFSI electrolyte-based Li-S batterycitations
- 2015S/PPy composite cathodes for Li-S batteries prepared by facile in-situ 2-step electropolymerisation process
- 2015Ionic transport through a composite structure of N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystals reinforced with polymer nanofibrescitations
- 2013Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytescitations
- 2012Corrosion in amine post combustion capture plants
- 2010The influence of conductive additives and inter-particle voids in carbon EDLC electrodescitations
- 2010In situ NMR Observation of the Formation of Metallic Lithium Microstructures in Lithium Batteriescitations
- 2010Ionic Liquids with the Bis(fluorosulfonyl)imide (FSI) anion: Electrochemical properties and applications in battery technologycitations
Places of action
Organizations | Location | People |
---|
document
S/PPy composite cathodes for Li-S batteries prepared by facile in-situ 2-step electropolymerisation process
Abstract
In this work a direct process for fabricating sulfur cathodes with high capacity for Li-S batteries is described obviating the need for the traditional sulfur cathode preparation using lengthy pasting and casting methods and at the same time having better control over the physical and electrochemical properties of the prepared cathodes. The process involves two electropolymerisation steps using polypyrrole conductive polymer with the first utilising a bulky polymeric dopant such as Nafion, polystyrene sulfonate or polyacrylic acid and the second involving a low molecular weight inorganic or organic dopant such as lithium sulphate or p-toluene sulfonate . Besides sulfur, carbon black was added to the electropolymerisation mixture to enhance the dispersion of sulfur and to improve the electrical conductivity of the final product. The process of cathode preparation can take up to 3 hrs and can be scaled up to suit larger cathodes requirements with dimensions around 100 cm2 for pouch cell preparation. Two types of flexible conductive substrates were used in this work; fine stainless steel mesh and carbon cloth fabric. The prepared cathodes were characterised by SEM and revealed highly porous structure and uniform coating compared to cathodes prepared by single step electropolymerisation. Coin and pouch cells were prepared using these cathodes and showed high capacity (~ 1000 mAh/g), efficiency (> 97%) and good capacity retention after 50 cycles at a C/10 current rate.