Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Masoumi, Mahdi

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Friction stir welding of AA2024 and AA2198 Aluminum alloys: effect of tool geometry and process parameterscitations

Places of action

Chart of shared publication
Jahazi, Mohammad
1 / 17 shared
Bocher, Philippe
1 / 22 shared
Zedan, Yasser
1 / 12 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Jahazi, Mohammad
  • Bocher, Philippe
  • Zedan, Yasser
OrganizationsLocationPeople

document

Friction stir welding of AA2024 and AA2198 Aluminum alloys: effect of tool geometry and process parameters

  • Jahazi, Mohammad
  • Bocher, Philippe
  • Zedan, Yasser
  • Masoumi, Mahdi
Abstract

In the present research an appropriate tool design is developed for joining of AA2198-T3 and AA2024-T3, subsequently the influence of rotational and traverse speed for the selected tool on the joint tensile properties is evaluated. Three shoulder profiles (flat, spiral, and fan) and five different pin profiles (tapered cylindrical, straight cylindrical, threaded cylindrical, cone, and square) were designed. The weld quality has been evaluated by means of visual inspection, microstructure analysis and tensile tests. Local strain maps measurements using Digital Image Correlation (DIC) enabled to determine weld local properties and determine the joints failure mode during monotonic tensile loading test.Two dimensional hardness map across the cross section through the weld joint was also carried out to further document the heterogeneities of the FSW joint. The tapered cylindrical pin with a fan shoulder was the optimal tool design configuration in terms of mechanical properties. Tensile tests were conducted on the joints produced by optimal tool design at different traverse and rotational speeds. The fracture of samples occurred in the HAZ of the advancing side (AA2198) and in the middle of the joint, which are zones depicting the highest strain values and the lowest hardness values via DIC technique and micro hardness measurements, respectively. Higher traverse speed was found to increase the joint yield strength. The joint efficiency can reach up to 78% by choosing optimum welding speed parameters of 750 rpm and 450 mm/min. Besides, it has been found that although the rotational speed has not a significant effect on the mechanical properties, higher rotational and traverse speeds can enhance the formation of tunneling and kissing bond defects in the joint.

Topics
  • impedance spectroscopy
  • microstructure
  • aluminium
  • strength
  • hardness
  • defect
  • yield strength
  • joining